Trong toán học, hình vuông là một trong những khối hình quan trọng bậc nhất, được dạy xuyên suốt ở các cấp bậc phổ thông. Vì vậy, để ôn lại lý thuyết về hình vuông, ngày hôm nay chúng ta sẽ cùng tìm hiểu tính chất của hình vuông và các vấn đề xoay quanh hình vuông nhé!
Hình vuông ABCD
Bạn đang xem: Hình vuông: Định nghĩa, tính chất và dấu hiệu nhận biết
Trong hình học Euclid, hình vuông là hình tứ giác đều, tức có 4 cạnh bằng nhau và 4 góc bằng nhau (4 góc vuông). Có thể coi hình vuông là hình chữ nhật có các cạnh bằng nhau, hoặc là hình thoi có 2 đường chéo bằng nhau.
Tọa độ Descartes của các đỉnh của một hình vuông có tâm ở gốc hệ tọa độ và mỗi cạnh dài 2 đơn vị, song song với các trục tọa độ là (±1, ±1). Phần trong của hình vuông đó bao gồm tất cả các điểm (x0, x1) với -1 < xi < 1.
Một hình vuông có bốn đỉnh A, B, C, D được kí hiệu lần lượt là ABCD.
Ngoài các tính chất mới, hình vuông có tất cả các tính chất của hình chữ nhật và hình thoi, bao gồm:
Một hình tứ giác là một hình vuông nếu như nó thoả mãn một trong những yêu cầu sau:
Có rất nhiều cách để nhận biết đâu là hình vuông. Cách phổ biến nhất đó qua việc chứng minh nó có đầy đủ các dấu hiệu nhận biết. Dưới đây là một số ví dụ và lời giải cho ví dụ đó.
Ví dụ 1: Cho hình sau đây, hỏi tứ giác AEDF là hình gì? Vì sao?
Ta có: EA⊥AF, DF⊥AF (hình vẽ)
⇔ EA // DF (tính chất song song)
Ta có: DE⊥AB, AF⊥AB (hình vẽ)
⇔ DE // AF (tính chất song song)
Xét tứ giác AEDF có EA // DF, DE // AF (cmt)
⇔ Tứ giác AEDF là hình bình hành (định nghĩa)
Xét hình bình hành AEDF có đường chéo AD là phân giác của góc A (∠EAD = ∠DAF = 45°)
⇒ Tứ giác AEDF là hình thoi.
Xét hình thoi AEDF có ∠BAC = ∠EAD + ∠DAF = 45°+45° = 90º
⇒ Tứ giác AEDF là hình vuông.
Ví dụ 2: Cho hình vuông ABCD. Trên AB, BC, CD, DA lấy theo thứ tự các điểm E, K, P, Q sao cho AE = BK = CP = DQ. Hỏi tứ giác EKPQ là hình gì? Vì sao?
Ta có: AB = BC = CD = DA (giả thiết)
AE = BK = CP = DQ (giả thiết)
Xem thêm : Ngâm Yến bằng nước nóng hay nước lạnh? Cách làm sạch Yến sào đúng cách nhất
Suy ra: EB = KC = PD = QA
* Xét ΔAEQ và ΔBKE, ta có:
AE = BK (giả thiết)
A = B = 90º
QA = EB (chứng minh trên)
Suy ra: ΔAEQ = ΔBKE (c.g.c) ⇒ EQ = EK (1)
* Xét ΔBKEvà ΔCPK,ta có: BK = CP (giả thiết)
B = C = 90º
EB = KC (chứng minh trên)
Suy ra: ΔBKE = ΔCPK (c.g.c) ⇒ EK = KP (2)
* Xét ΔCPK và ΔDQP, ta có: CP = DQ (giả thiết)
C = D = 90º
DP = CK (chứng minh trên)
Suy ra: ΔCPK = ΔDQP (c.g.c) ⇒ KP = PQ (3)
Từ (1), (2) và (3) suy ra: EK = KP = PQ = EQ
Hay tứ giác EKPQ là hình thoi.
Mặt khác: ΔAEQ = ΔBKE
⇒ ∠(AQE) = ∠(BKE)
Mà ∠(AQE) + ∠(AEQ) = 90º
⇒ ∠(BEK) + ∠(AEQ) = 90º
⇒ ∠(BEK) + ∠(QEK) + ∠(AEQ ) = 180o
Suy ra: ∠(QEK) = 180º – (∠(BEK) + ∠(AEQ)) = 180º – 90º = 90º
Vậy tứ giác EKPQ là hình vuông.
Ví dụ 3: Hình chữ nhật ABCD có AB = 2AD. Gọi P, Q theo thứ tự là trung điểm của AB, CD. Gọi H là giao điểm của AQ và DP, gọi K là giao điểm của CP và BQ. Chứng minh rằng PHQK là hình vuông.
* Xét tứ giác APQD, ta có: AB // CD (gt) hay AP // QD
AP = AB (gt)
QD = 1/2 CD (gt)
Suy ra: AP = QD
Hay tứ giác APQD là hình bình hành.
Lại có: ∠A = 90º
Suy ra tứ giác APQD là hình chữ nhật.
Mà AD = AP = 1/2 AB
Vậy tứ giác APQD là hình vuông.
⇒ AQ ⊥ PD (tính chất hình vuông) ⇒ ∠(PHQ) = 90º (1)
HP = HQ (tính chất hình vuông)
* Xét tứ giác PBCQ, ta có: PB // CD
PB = 1/2 AB (gt)
CQ = 1/2 CD (gt)
Suy ra: PB = CQ nên tứ giác PBCQ là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
∠B = 90º suy ra tứ giác PBCQ là hình chữ nhật
PB = BC (vì cùng bằng AD = 1/2 AB)
Vậy tứ giác PBCQ là hình vuông
⇒ PC ⊥ BC (tính chất hình vuông) ⇒ ∠(PKQ) = 90º (2)
PD là tia phân giác ∠(APQ) (tính chất hình vuông)
PC là tia phân giác ∠(QPB) (tính chất hình vuông)
Suy ra: PD ⊥ PC (tính chất hai góc kề bù) ⇒ ∠(HPK) = 90º (3)
Từ (1), (2) và (3) suy ra tứ giác PHQK là hình vuông.
Trên đây là tính chất của hình vuông và toàn bộ kiến thức xoay quanh hình vuông. Rất mong các em có thể tiếp thu tốt được vấn đề này, và từ đó có thể giải được các bài toán hình khó và trở nên đam mê với bộ môn hình học này nhé!
Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp
This post was last modified on 01/03/2024 04:19
Con số may mắn hôm nay 23/11/2024 theo năm sinh: Nhặt TIỀN từ con số…
Tử vi thứ bảy ngày 23/11/2024 của 12 con giáp: Tuổi Thìn chán nản, tuổi…
Vận may của 4 con giáp đang ngày càng xuống dốc. Cuối tuần này (23-24/11),…
Con số cuối cùng trong ngày sinh dự đoán con người sẽ GIÀU CÓ, sống…
Cuối tuần này (23-24/11), 4 con giáp sẽ gặp nhiều may mắn và thành công…
Tử vi hôm nay – Top 3 con giáp thịnh vượng nhất ngày 22/11/2024