Làm bài tập về hằng đẳng thức mà không biết làm, không hiểu thì phải làm sao cùng Hangdangthuc.com tìm hiểu về các hằng đẳng thức đáng nhớ và các ứng dụng cơ bản của chúng tại đây nhé!
Đẳng thức là cặp biểu thức nối liền với nhau bởi dấu =
Bạn đang xem: Công thức 7 hằng đẳng thức đáng nhớ
Hằng đẳng thức là đẳng thức đúng với mọi trị số gán cho các chữ trong đó.
Còn theo Wikipedia định nghĩa thì: Hằng đẳng thức nghĩa là một loạt các đẳng thức có liên quan tới nhau, hợp lại thành một hằng đẳng thức.
Ví dụ: (a+b)2 = a2 +2ab +b2 là một hằng đẳng thức vì:
Biểu thức (a+b)2 và biểu thức a2 +2ab +b2 được nối với nhau bởi dấu =
Với mọi giá trị của a, b thì đẳng thức luôn đúng.
Còn không là một hằng đẳng thức vì hai biểu thức không được nối với nhau bởi dấu =
Hằng đẳng thức được ứng dụng rất nhiều trong Toán học, tiêu biểu nhất là:
Công thức: (A + B)2 = A2 + 2AB + B2
Giải thích: Bình phương của một tổng bằng bình phương của số thứ nhất cộng với hai lần tích của số thứ nhất nhân với số thứ hai, cộng với bình phương của số thứ hai
* Ví dụ Bài 16 trang 11 sgk toán 8 tập 1: Viết dưới dạng bình phương của 1 tổng hoặc 1 hiệu
Công thức: (A – B)2 = A2 – 2AB + B2
Giải thích: Bình phương của một hiệu bằng bình phương của số thứ nhất trừ đi hai lần tích của số thứ nhất nhân số thứ hai sau đó cộng bình phương với số thứ hai.
* Ví dụ Bài 16 trang 11 sgk toán 8 tập 1: Viết dưới dạng bình phương của 1 tổng hoặc 1 hiệu
Công thức: A2 – B2 = (A – B)(A + B)
Giải thích: Hiệu hai bình phương của hai số bằng tổng hai số đó nhân với hiệu hai số đó.
* Ví dụ: Viết dưới dạng tích biểu thức: 4×2 – 9
* Lời giải:
– Ta có: 4×2 – 9 = (2x)2 – (3)2 = (2x – 3)(2x + 3)
Công thức: (A + B)3 = A3 + 3A2B + 3AB2 + B3
Giải thích: Lập phương của một tổng hai số bằng lập phương của số thứ nhất cộng với ba lần tích bình phương số thứ nhất nhân số thứ hai cộng với ba lần tích số thứ nhất nhân với bình phương số thứ hai cộng với lập phương số thứ hai.
* Ví dụ Bài 26 trang 14 sgk toán 8 tập 1: Tính
Công thức: (A – B)3 = A3 – 3A2B + 3AB2 – B3
Giải thích: Lập phương của một hiệu hai số bằng lập phương của số thứ nhất trừ đi ba lần tích bình phương của số thứ nhất nhân với số thứ hai cộng với ba lần tích số thứ nhất nhân với bình phương số thứ hai trừ đi lập phương số thứ hai
* Ví dụ
(2x – 3y)3 = (2x)3 – 3.(2x)2(3y) + 3(2x).(3y)2 – (3y)3 = 8×3 – 36x2y + 54xy2 – 27y3
Công thức: A3 + B3 = (A + B)(A2 – AB + B2)
Giải thích: Tổng của hai lập phương hai số bằng tổng của hai số đó nhân với bình phương thiếu của hiệu hai số đó
* Ví dụ: Viết dưới dạng tích x3 + 64
x3 + 64 = x3 + 43 = (x + 4)(x2 – 4x + 42) = (x + 4)(x2 – 4x + 16)
Công thức: A3 – B3 = (A – B)(A2 + AB + B2)
Giải thích: Hiệu của hai lập phương của hai số bằng hiệu hai số đó nhân với bình phương thiếu của tổng của hai số đó.
Xem thêm : Lương cơ sở là gì? Lương cơ sở khác gì lương tối thiểu vùng?
* Ví dụ: Viết dưới dạng tích 8×3 – y3
8×3 – y3 = (2x)3 – y3 = (2x – y)[(2x)2 + (2x).y + y2] = (2x – y)(4×2 + 2xy + y2)
* Chú ý: a + b= -(-a – b); (a + b)2= [-(-a – b)]2 ; (a – b)2= [-(b – a)]2; (a + b)3 = [-(-a – b)]3; (a – b)3=[-(-a + b)]3
Ví dụ: Tính giá trị của biểu thức : A = x2 – 4x + 4 tại x = -1
* Lời giải.
– Ta có : A = x2 – 4x + 4 = x2 – 2.x.2 + 22 = (x – 2)2
– Tại x = -1 : A = ((-1) – 2)2 = (-3)2 = 9
⇒ Kết luận: Vậy tại x = -1 thì A = 9
Ví dụ: Chứng minh biểu thức sau không phụ thuộc vào x: A = (x – 1)2 + (x + 1)(3 – x)
* Lời giải.
– Ta có: A = (x – 1)2 + (x + 1)(3 – x) = x2 – 2x + 1 – x2 + 3x + 3 – x = 4 : hằng số không phụ thuộc vào biến x.
Ví dụ: Tính giá trị nhỏ nhất của biểu thức: A = x2 – 2x + 5
* Lời giải:
– Ta có : A = x2 – 2x + 5 = (x2 – 2x + 1) + 4 = (x – 1)2 + 4
– Vì (x – 1)2 ≥ 0 với mọi x.
⇒ (x – 1)2 + 4 ≥ 4 hay A ≥ 4
– Vậy giá trị nhỏ nhất của A = 4, Dấu “=” xảy ra khi : x – 1 = 0 hay x = 1
⇒ Kết luận GTNN của A là: Amin = 4 ⇔ x = 1
Ví dụ: Tính giá trị lớn nhất của biểu thức: A = 4x – x2
* Lời giải:
– Ta có : A = 4x – x2 = 4 – 4 + 4x – x2 = 4 – (4 – 4x + x2) = 4 – (x2 – 4x + 4) = 4 – (x – 2)2
– Vì (x – 2)2 ≥ 0 với mọi x ⇔ -(x – 2)2 ≤ 0 với mọi x
⇔ 4 – (x – 2)2 ≤ 4 [cộng 2 vế với 4]
⇔ A ≤ 4 Dấu “=” xảy ra khi : x – 2 = 0 hay x = 2
⇒ Kết luận GTLN của A là: Amax = 4 ⇔ x = 2.
Ví dụ: Chứng minh đẳng thức sau đúng: (a + b)3 – (a – b)3 = 2b(3a2 + b2)
* Lời giải:
– Đối với dạng toán này chúng ta biến đổi VT = VP hoặc VT = A và VP = A
– Ta có: VT = (a + b)3 – (a – b)3
= (a3 + 3a2b + 3ab2 + b3) – (a3 – 3a2b + 3ab2 – b3)
= a3 + 3a2b + 3ab2 + b3 – a3 + 3a2b – 3ab2 + b3
= 6a2b + 2b3
= 2b(3a2 + b2) = VP (đpcm).
Xem thêm : [Kiến thức] Mẹ bầu thức khuya có sao không?
⇒ Kết luận, vậy : (a + b)3 – (a – b)3 = 2b(3a2 + b2)
– Biến đổi bất đẳng thức về dạng biểu thức A ≥ 0 hoặc A ≤ 0. Sau đó dùng các phép biến đổi đưa A về 1 trong 7 hằng đẳng thức.
Ví dụ: Chứng minh biểu thức B nhận giá trị âm với mọi giá trị của biến x, biết: B = (2 – x)(x – 4) – 2
* Lời giải:
– Ta có: B = (2 – x)(x – 4) – 2 = 2x – 8 – x2 + 4x – 2 = -x2 + 6x – 9 – 1 = -(x2 – 6x + 9) – 1 = -(x-3)2 – 1
– Vì (x-3)2 ≥ 0 ⇔ -(x-3)2 ≤ 0 ⇒ -(x-3)2 – 1 ≤ -1 < 0 với mọi x,
Ví dụ 1: Phân tích đa thức sau thành nhân tử: A = x2 – 4x + 4 – y2
* Lời giải:
– Ta có : A = x2 – 4x + 4 – y2 [để ý x2 – 4x + 4 có dạng hằng đẳng thức]
= (x2 – 4x + 4) – y2 [nhóm hạng tử]
= (x – 2)2 – y2 [xuất hiện đẳng thức số A2 – B2]
= (x – 2 – y )( x – 2 + y)
⇒ A = (x – 2 – y )( x – 2 + y)
Ví dụ 2: phân tính A thành nhân tử biết: A = x3 – 4×2 + 4x
= x(x2 – 4x + 4)
= x(x2 – 2.2x + 22)
= x(x – 2)2
Ví dụ 3: Phân tích B thành nhân tử biết: B = x2 – 2xy – x + 2y
= (x2 – x) + (2y – 2xy)
= x(x – 1) – 2y(x – 1)
= (x – 1)(x – 2y)
Ví dụ 4: Phân tích C thành nhân tử biết: C = x2 – 5x + 6
= x2 – 2x – 3x + 6
= x(x – 2) – 3(x – 2)
= (x – 2)(x – 3)
Ví dụ:Tìm giá trị củ x biết: x2( x – 3) – 4x + 12 = 0
* Lời giải.
x2(x – 3) – 4x + 12 = 0
⇔ x2 (x – 3) – 4(x – 3) = 0
⇔ (x – 3) (x2 – 4) = 0
⇔ (x – 3)(x – 2)(x + 2) = 0
⇔ (x – 3) = 0 hoặc (x – 2) = 0 hoặc (x + 2) = 0
⇔ x = 3 hoặc x = 2 hoặc x = -2
⇒ Kết luận, vậy nghiệm : x = 3; x = 2; x = -2
Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp
This post was last modified on %s = human-readable time difference 02:23
Lập Đồng 2024 là ngày mấy? Đón mùa đông lạnh giá, ai được Thần Tài…
Vận mệnh người tuổi Ngọ theo ngày sinh: Bạn có tham vọng không?
Tử vi hôm nay: 4 con giáp ngày 5/11/2024 sẽ phát tài, thoải mái thể…
Con số may mắn hôm nay là 5/11/2024 theo năm sinh, con số chuẩn là…
Tử vi thứ ba ngày 5/11/2024 của 12 con giáp: Hổ bối rối, Chó bị…
4 con giáp càng bướng bỉnh sẽ càng đau khổ và mất phương hướng trong…