Categories: Tổng hợp

Các trường hợp bằng nhau của hai tam giác

Published by

1. Các trường hợp bằng nhau của hai tam giác

– Trường hợp 1: cạnh – cạnh – cạnh: Nếu ba cạnh của tam giác này bằng ba cạnh tương ứng của tam giác kia thì hai tam giác đó bằng nhau.

Xét ∆ABC và ∆DFE có:

AB = DF (gt)

AC = DE (gt)

BC = FE (gt)

Suy ra ∆ABC = ∆DFE (c-c-c)

(Các cặp góc tương ứng)

– Trường hợp 2: cạnh – góc – cạnh: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa tương ứng của tam giác kia thì hai tam giác đó bằng nhau.

Xét ∆ABC và ∆DFE có:

AB = DF (gt)

(gt)

BC = FE (gt)

Suy ra ∆ABC = ∆DFE (c-g-c)

( Các cặp góc tương ứng)

(Cạnh tương ứng)

– Trường hợp 3: góc – cạnh – góc: Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề tương ứng của tam giác kia thì hai tam giác đó bằng nhau.

Xét ∆ABC và ∆DFE có:

(gt)

AB = DF(gt)

(gt)

Suy ra ∆ABC = ∆DFE (g-c-g)

( Góc tương ứng)

(Các cặp cạnh tương ứng)

2. Các trường hợp bằng nhau của tam giác vuông

– Trường hợp 1: cạnh góc vuông – cạnh góc vuông: Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

– Trường hợp 2: cạnh góc vuông – góc nhọn: Nếu một cạnh góc vuông và một góc nhọn của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn tương ứng của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

– Trường hợp 3: cạnh huyền – góc nhọn: Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn tương ứng của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

3. Ứng dụng

Chúng ta thường vận dụng các trường hợp bằng nhau của tam giác để:

  • Chứng minh: hai tam giác bằng nhau, hai đoạn thẳng bằng nhau, hai góc bằng nhau; hai đường thẳng vuông góc; hai đường thẳng song song; ba điểm thẳng hàng; …
  • Tính: các độ dài đoạn thẳng; tính số đo góc; tính chu vi; diện tích; …
  • So sánh: các độ dài đoạn thẳng; so sánh các góc; …

4. Ví dụ minh họa

Bài toán 1: Cho tam giác ABC; M là trung điểm BC; N là 1 điểm trong tam giác sao cho NB = NC.

Chứng minh: ∆NMB = ∆ NMC.

Hướng dẫn giải :

Xét ∆NMB và ∆ NMC có:

MB = MC (do M là trung điểm BC)

NB = NC (gt)

Chung cạnh MN

Suy ra ∆NMB = ∆ NMC (c-c-c) (đpcm)

Bài toán 2: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA, lấy điểm E sao cho ME = MA.

Chứng minh AC // BE.

Xét ΔAMC và ΔEMB có

(gt)

(đối đỉnh)

( M là trung điểm BC)

Suy ra ΔAMC = ΔEMB (c-g-c)

(Góc tương ứng)

Mà hai góc này là hai góc so le trong suy ra AC // BE (Đpcm)

This post was last modified on %s = human-readable time difference 19:59

Published by

Bài đăng mới nhất

Con số may mắn hôm nay 6/11/2024 theo năm sinh: Số nào giúp bạn thỏa ước nguyện?

Con số may mắn hôm nay 6/11/2024 theo năm sinh: Con số nào giúp bạn…

14 giờ ago

Tử vi thứ 4 ngày 6/11/2024 của 12 con giáp: Dần kiêu ngạo, Ngọ hăng hái

Tử vi thứ Tư ngày 6/11/2024 của 12 con giáp: Hổ kiêu ngạo, Ngựa nhiệt…

14 giờ ago

Tổ tiên báo hiệu: Đúng 10 ngày tới, 3 tuổi rơi trúng hố VÀNG, thu nhập TĂNG chóng mặt, sự nghiệp bùng NỔ

Tổ tiên báo hiệu: Đúng 10 ngày nữa con 3 tuổi sẽ rơi vào hố…

16 giờ ago

Bày cách khiến 12 con giáp rung động, để tình yêu mãi luôn nồng nàn

Hướng dẫn cách làm 12 con giáp rung động để tình yêu luôn nồng nàn

16 giờ ago

Lập Đông 2024 là ngày nào? Đón mùa Đông lạnh giá, ai được Thần Tài ưu ái đặc biệt?

Lập Đồng 2024 là ngày mấy? Đón mùa đông lạnh giá, ai được Thần Tài…

23 giờ ago

Vận mệnh người tuổi Ngọ theo ngày sinh: Bạn có phải người giàu tham vọng?

Vận mệnh người tuổi Ngọ theo ngày sinh: Bạn có tham vọng không?

23 giờ ago