Bài viết Cách tìm tọa độ trung điểm của đoạn thẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm tọa độ trung điểm của đoạn thẳng.
Cách tìm tọa độ trung điểm của đoạn thẳng (cực hay, chi tiết)
A. Phương pháp giải
Áp dụng công thức tọa độ trung điểm của đoạn thẳng để giải bài tập.
Công thức tọa độ trung điểm của đoạn thẳng:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(xA; yA) và B(xB; yB)
Nếu M là trung điểm của đoạn thẳng AB thì
B. Ví dụ minh họa
Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho hai điểm M(2; 9) và N(1; -3). Xác định tọa độ trung điểm I của đoạn thẳng MN.
Xem thêm : TOP 10 Chức năng của hệ điều hành
Hướng dẫn giải:
Tọa độ trung điểm I của MN là
Ví dụ 2: Ví dụ 2. Trong mặt phẳng tọa độ Oxy, cho điểm A(2; 3) và B(11; 5). Gọi H là điểm đối xứng của B qua A. Tọa độ điểm H là:
A. H (; 4)
B. H(-7; 1)
C. H(7; -1)
D. H(20; 7)
Xem thêm : TOP 10 Chức năng của hệ điều hành
Hướng dẫn giải:
Vì H là điểm đối xứng của B qua A, do đó A là trung điểm của BH.
Gọi tọa độ của H là H(xH; yH)
Áp dụng công thức tọa độ trung điểm ta có:
Xem thêm : Bánh dày bao nhiêu calo – Cách ăn bánh dày giảm cân hiệu quả
H (-7; 1)
Đáp án B
Ví dụ 3: Cho tam giác ABC, có B(9; 7) và C(11; -1). Gọi M và N lần lượt là trung điểm của AB và AC. Tọa độ vecto là:
A. (2 ; -8)
B. (1; -4)
C. (10; 6)
D. (5; 3)
Xem thêm : TOP 10 Chức năng của hệ điều hành
Hướng dẫn giải:
Do M là trung điểm của AB nên ta có:
Do N là trung điểm của AC nên ta có:
Tọa độ của = (xN; xM; yN; yM)
Vậy =(1; -4).
Ví dụ 4: Trong mặt phẳng tọa độ Oxy, gọi B’, B”, B”’ lần lượt là điểm đối xứng của B(-2; 7) qua trục Ox, Oy và qua gốc tọa độ O. Tọa độ các điểm B’, B”, B”’ là:
A. B’(-2; -7), B”(2; 7), B”’(2; -7)
B. B’(-7; 2), B”(2; 7), B”’(2; -7).
C. B’(-2; -7), B”(2; 7), B”’(-7; -2)
D. B’(-2; -7), B”(7; 2), B”’(2; -7).
Xem thêm : TOP 10 Chức năng của hệ điều hành
Hướng dẫn giải:
+ B’ đối xứng với B(-2; 7) qua trục Ox, suy ra B’(-2; -7) (do đối xứng qua trục Ox thì hoành độ giữ nguyên và tung độ đối nhau).
+ B” đối xứng với B qua trục Oy, suy ra B”(2; 7) (do đối xứng qua trục Oy thì tung độ giữ nguyên và hoành độ đối nhau).
+ B”’ đối xứng với B qua gốc tọa độ O, suy ra O là trung điểm của BB”’
Nên ta có: B”’(2; -7)
Đáp án A
Ví dụ 5: Cho E(1; -3). Điểm sao cho A là trung điểm của BE. Tọa độ điểm B là:
A. B(0; 3)
B. B(; 0)
C. B(0; 2)
D. B(4; 2)
Xem thêm : TOP 10 Chức năng của hệ điều hành
Hướng dẫn giải:
Ta có:
Do A là trung điểm của BE nên ta có
Vậy B(0; 3).
Đáp án A
Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:
- Bài tập về Quy tắc trọng tâm tam giác của vecto (cực hay, chi tiết)
- Cách phân tích một vecto theo hai vecto không cùng phương (cực hay, chi tiết)
- Bài tập Tọa độ của vecto, tọa độ của một điểm (cực hay, chi tiết)
- Tìm m để hai vecto cùng phương (cực hay, chi tiết)
- Cách tìm tọa độ của trọng tâm tam giác (cực hay, chi tiết)
- Tìm tọa độ điểm thỏa mãn điều kiện cho trước (cực hay, chi tiết)
Đã có lời giải bài tập lớp 10 sách mới:
- (mới) Giải bài tập Lớp 10 Kết nối tri thức
- (mới) Giải bài tập Lớp 10 Chân trời sáng tạo
- (mới) Giải bài tập Lớp 10 Cánh diều
Săn SALE shopee Tết:
- Đồ dùng học tập giá rẻ
- Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
- Tsubaki 199k/3 chai
- L’Oreal mua 1 tặng 3
Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp