Lý thuyết Dấu hiệu chia hết cho 3, cho 9 Toán 6 Chân trời sáng tạo

frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="">
Video dấu hiệu chia hết cho 3 và 9

I. Dấu hiệu chia hết cho 9

Ví dụ:

a) Số $1944$ chia hết cho $9$ vì có tổng các chữ số là $1+9+4+4=18$ chia hết cho $9$.

b) Số $7325$ không chia hết cho $9$ vì có tổng các chữ số là $7+3+2+5=17$ không chia hết cho $9$.

II. Dấu hiệu chia hết cho 3

Ví dụ:

a) Số $90156$ chia hết cho $3$ vì có tổng các chữ số là $9+0+1+5+6=21$ chia hết cho $3$.

b) Số $6116$ không chia hết cho $3$ vì có tổng các chữ số là $6+1+1+6=14$ không chia hết cho $3$.

Chẳng hạn:

Số 6 chia hết cho 3 nhưng 6 không chia hết cho 9.

CÁC DẠNG TOÁN VỀ DẤU HIỆU CHIA HẾT CHO 3, CHO 9

I. Nhận biết các số chia hết cho 9

Phương pháp giải

Sử dụng dấu hiệu chia hết cho cho 9.

Sử dụng tính chất chia hết của tổng, của hiệu.

Ví dụ:

100984 có tổng các chữ số là: 1+9+8+4=22

22 là số không chia hết cho 9 nên 100984 không chia hết cho 9

13545 có tổng các chữ số là: 1+3+5+4+5=18. Số 18 chia hết cho 9 nên 13545 chia hết cho 9.

II. Viết các số chia hết cho 9 từ các số hoặc các chữ số cho trước

Phương pháp

Các số chia hết cho 9 là các số có tổng các chữ số chia hết cho 9.

Ví dụ:

Cho (overline {1a32} ) chia hết cho 9. Tìm số thay thế cho (a).

Giải:

Tổng các chữ số của (overline {1a32} ) là (1 + a +3 + 2 = a + 6) để số (overline {1a32} ) chia hết cho 9 thì (a + 6) phải chia hết cho 9.

Do $a$ là các số tự nhiên từ 0 đến 9 nên

(begin{array}{l}0 + 6 le a +6 le 9 + 6 Rightarrow 6 le a + 6 le 15end{array})

Số chia hết cho 9 từ 6 đến 15 chỉ có đúng một số 9, do đó (a +6 = 9 Rightarrow a = 3)

Vậy số thay thế cho a chỉ có thể là 3.

III. Bài toán có liên quan đến số dư trong phép chia một số tự nhiên cho 9

Phương pháp giải

– Sử dụng tính chất: Số dư của một số khi chia cho $9$ bằng số dư của tổng các chữ số của số đó khi chia cho $9$.

Ví dụ:

ho số (N = overline {5a} ). Tìm các số tự nhiên $N$ sao cho $N$ chia cho $9$ dư $5$.

Giải:

Vì $N$ chia cho $9$ dư $5$ nên $a+5$ chia cho $9$ dư $5$.

=> $a$ chia hết cho $9$.

Mà (a in left{ {0;,,1;,,2;,,…….;,,9} right})

=>$a$ chỉ có thể là $0;9$

=> $N$ có thể là $50;59$

IV. Nhận biết các số chia hết cho 3

Phương pháp

Sử dụng dấu hiệu chia hết cho 3.

Sử dụng tính chất chia hết của tổng, của hiệu.

Ví dụ:

a) 555464 có tổng các chữ số là: 5+5+5+4+6+4=29 không chia hết cho 3 nên 555464 không chia hết cho 3.

b) 15645 có tổng các chữ số là: 1+5+6+4+5=21 chia hết cho 3 nên 15645 chia hết cho 3.

V. Viết các số chia hết cho 3 từ các số hoặc các chữ số cho trước

Phương pháp giải

Các số chia hết cho 3 là các số có tổng các chữ số chia hết cho 3.

Ví dụ:

Cho (overline {1a3} ) chia hết cho 3. Tìm số thay thế cho (a).

Giải:

Tổng các chữ số của (overline {1a3} ) là (1 + a +3 = a + 4) để số (overline {1a3} ) chia hết cho 3 thì (a + 4) phải chia hết cho 3.

Do $a$ là các số tự nhiên từ 0 đến 9 nên

(begin{array}{l}0 + 4 le a +4 le 9 +4 Rightarrow 4 le a + 4 le 13end{array})

Số chia hết cho 3 từ 4 đến 13 có 3 số lần lượt là 6, 9, 12.

Với (a +4 = 6 Rightarrow a = 2).

Với (a +4 = 9 Rightarrow a = 5)

Với (a +4 = 12 Rightarrow a = 8)

Vậy số thay thế cho a có thể là 2, 5, 8.

VI. Bài toán có liên quan đến số dư trong phép chia một số tự nhiên cho 3

Phương pháp

– Số dư trong phép chia cho 3 chỉ có thể là 0, 1 hoặc 2.

– Mọi số tự nhiên $n$ luôn có thể được viết một trong 3 dạng sau:

+) Dạng 1: $n=3k$ (số chia hết cho 3);

+) Dạng 2: $n=3k+1$ (số chia cho 3 dư 1);

+) Dạng 3: $n=3k+2$ (số chia cho 3 dư 2)

Với $kin mathbb{Z}$.

Ví dụ:

Cho số (N = overline {5a} ). Tìm các số tự nhiên $N$ sao cho $N$ chia cho $3$ dư $2$.

Giải:

(N = overline {5a} =50+a)

Vì $N$ chia cho $3$ dư $2$ nên $N-2$ chia hết cho $3$.

=> $50+a-2$ chia hết cho $3$.

=> $a+48$ chia hết cho $3$.

Vì $48$ chia hết cho $3$ nên để tổng $a+48$ chia hết cho $3$ thì $a$ cũng phải chia chết cho $3$.

Mà (a in left{ {0;,,1;,,2;,,…….;,,9} right})

=>$a$ chỉ có thể là $0;3;6;9$

=> $N$ có thể là $50;53;56;59$

Lý thuyết Dấu hiệu chia hết cho 3, cho 9 Toán 6 Chân trời sáng tạo</>