Lý thuyết Toán 9 Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài giảng Toán 9 Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bạn đang xem: Lý thuyết Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn (mới 2024 + Bài Tập) – Toán 9
A. Lý thuyết
1. Góc có đỉnh ở bên trong đường tròn
– Góc có đỉnh nằm bên trong đường tròn được gọi là góc có đỉnh ở bên trong đường tròn.
– Định lí: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
Ví dụ 1. Cho đường tròn (O) có hai dây AB và CD cắt nhau tại E (điểm E nằm bên trong đường tròn) như hình vẽ.
Trong hình vẽ trên, BEC^ là góc có đỉnh nằm ở bên trong đường tròn chắn hai cung là .
Do đó,
2. Góc có đỉnh nằm bên ngoài đường tròn
Xem thêm : Uống hồng trà có mất ngủ không? Nên uống hồng trà khi nào?
– Góc có đỉnh ở bên ngoài đường tròn là góc có đỉnh nằm ngoài đường tròn và các cạnh đều có điểm chung với đường tròn.
– Định lí: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
Ví dụ 2. Cho đường tròn (O) có hai dây AB và CD cắt nhau tại E (điểm E nằm bên ngoài đường tròn) như hình vẽ.
Trong hình vẽ trên, BEC^ là góc có đỉnh nằm ở bên ngoài đường tròn chắn hai cung là BnC⏜, AmD⏜.
Do đó,
B. Bài tập tự luyện
Bài 1. Cho đường tròn đường tròn (O) có hai dây AB và CD cắt nhau tại M như hình vẽ. Tính số đo của cung BD, biết AMB^=120o.
Lời giải:
Bài 2. Cho đường tròn đường tròn (O) đường kính BC. Lấy điểm A nằm trên đường tròn, vẽ tiếp tuyến AM (A là tiếp điểm). Tính AMC^, biết số đo cung AC là 120o.
Lời giải:
Xem thêm : Tính chu vi tam giác vuông
Bài 3. Từ điểm A nằm bên ngoài đường tròn (O) kẻ tiếp tuyến AB và cát tuyến ACD. Vẽ dây BM vuông góc với tia phân giác góc BAC tại H cắt CD tại E. Chứng minh BM là đường phân giác góc CBD.
Lời giải:
∆ABE có AH là đường phân giác đồng thời là đường cao nên ∆ABE cân tại đỉnh A.
Xem thêm các bài tổng hợp lý thuyết Toán lớp 9 đầy đủ, chi tiết khác:
Lý thuyết Cung chứa góc
Lý thuyết Tứ giác nội tiếp
Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp
Lý thuyết Độ dài đường tròn, cung tròn
Lý thuyết Diện tích hình tròn, hình quạt tròn
Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp