Hình thang là một tứ giác lồi có 2 cạnh đối song song. Hai cạnh này được gọi là hai cạnh đáy của hình thang. Hai cạnh còn lại là hai cạnh bên.
Các trường hợp đặc biệt của hình thang:
Bạn đang xem: Hình thang là gì? Các tính chất cơ bản của hình thang và các dạng bài tập về hình thang
- Hình thang vuông: Hình thang có 1 góc vuông được gọi là hình thang vuông
- Hình thang cân: Hình thang có 2 góc kề một cạnh đáy bằng nhau là hình thang cân.
- Hình thang vuông cân: Là hình thang vừa vuông vừa cân và còn được gọi là hình chữ nhật.
Hình thang
Các tính chất của hình thang
- Tính chất về góc
- Hai góc kề một cạnh bên của hình thang có tổng bằng 180 độ (nằm ở vị trí trong cùng phía của hai đoạn thẳng song song là 2 cạnh đáy).
- Đối với hình thang cân thì hai góc kề một cạnh đáy bằng nhau.
- Tính chất về cạnh
- Hình thang có 2 cạnh đáy bằng nhau thì hai cạnh bên sẽ song song và bằng nhau.
- Ngược lại, nếu hình thang có 2 cạnh bên song song thì chúng sẽ bằng nhau và 2 cạnh đáy bằng nhau.
- Hình thang cân có 2 đường chéo bằng nhau.
- Tính chất về đường trung bình
Đường trung bình là đường thẳng nối trung điểm hai cạnh bên của hình thang.
Xem thêm : Hộ chiếu hết hạn hoặc sắp hết hạn có được nhập cảnh không?
Tính chất 1: Đường thẳng đi qua trung điểm 1 cạnh bên của hình thang và song song với 2 cạnh đáy thì sẽ đi qua trung điểm của cạnh bên còn lại.
Tính chất 2: Đường trung bình của hình thang sẽ song song với 2 cạnh đáy và bằng ½ tổng 2 đáy.
Công thức tính diện tích hình thang:
Các dạng bài tập về hình thang
Bài giải:
- Nhìn vào hình ta có thể dễ dàng thấy MP//DC và MQ//AB
Kết hợp với AB//DC suy ra MP MQ
=> Ba điểm M, P, Q thẳng hàng
Tương tự, 3 điểm N, P, Q thẳng hàng
Suy ra 4 điểm M, N, P, Q nằm trên cùng một đường thẳng.
- Ta có MN là đường trung bình của hình thang ABCD
Bài tập 3: Cho hình thang ABCD, đáy AB = 40 (đvđd), CD = 80 (đvđd), cạnh bên BC = 50 (đvđd) và AD = 30 (đvđd). Yêu cầu: Chứng minh ABCD là hình thang vuông.
Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp