Công thức tính diện tích tam giác thường, vuông, cân như thế nào? Mời các bạn cùng tham khảo bài viết dưới đây để nắm được những cách tính diện tích tam giác dễ hiểu và được sử dụng nhiều nhất nhé.
- Điểm rèn luyện có ảnh hưởng đến bằng tốt nghiệp đại học?
- Cường Đô La “đập hộp” siêu xe cả Việt Nam mới có 2 người đặt: Giá không dưới 19 tỷ đồng, "ông trùm cà phê" Đặng Lê Nguyên Vũ cũng từng săn lùng rồi sở hữu
- Cách thoát quản trị viên trên Fanpage
- Giá vé tàu điện Cát Linh Hà Đông
- Phụ nữ sau khi sinh có được ăn bánh mì, bánh ngọt được không?
1. Tính diện tích tam giác thường
Tam giác ABC có ba cạnh a, b, c, ha là đường cao từ đỉnh A như hình vẽ:
Bạn đang xem: Công thức tính diện tích tam giác: vuông, thường, cân, đều
a. Công thức chung
Diện tích tam giác bằng chiều cao nhân với độ dài cạnh đối diện rồi chia cho 2.
Ví dụ:
Tính diện tích hình tam giác có độ dài đáy là 5m và chiều cao là 24dm.
Giải: Chiều cao 24dm = 2,4m
Diện tích tam giác là:
b. Tính diện tích tam giác khi biết một góc
Diện tích tam giác bằng ½ tích hai cạnh kề với sin của góc hợp bởi hai cạnh đó trong tam giác.
Ví dụ:
Tam giác ABC có cạnh BC = 7, cạnh AB = 5, góc B bằng 60 độ. Tính diện tích tam giác ABC?
Giải:
c. Tính diện tích tam giác khi biết 3 cạnh bằng công thức Heron.
Sử dụng công thức Heron đã được chứng minh:
Với p là nửa chu vi tam giác:
Có thể viết lại bằng công thức:
Ví dụ:
Xem thêm : Lý thuyết và bài tập minh họa Chuyển động tròn đều
Tính diện tích hình tam giác có độ dài cạnh AB = 8, AC = 7, CB = 9
Giải:
d. Tính diện tích bằng bán kính đường tròn ngoại tiếp tam giác (R).
Lưu ý: Cần phải chứng minh được R là bán kính đường tròn ngoại tiếp tam giác.
Ví dụ:
Cho tam giác ABC, độ dài các cạnh a = 6, b = 7, c = 5, R = 3 (R là bán kính đường tròn ngoại tiếp tam giác ABC). Tính diện tích của tam giác ABC.
Giải:
e. Tính diện tích bằng bán kính đường tròn nội tiếp tam giác (r).
Ví dụ: Tính diện tích tam giác ABC biết độ dài các cạnh AB = 20, AC = 21, BC = 15, r = 5 (r là bán kính đường tròn nội tiếp tam giác ABC).
Giải:
Nửa chu vi tam giác là:
r= 5
Diện tích tam giác là:
2. Tính diện tích tam giác cân
Tam giác cân ABC có ba cạnh, a là độ dài cạnh đáy, b là độ dài hai cạnh bên, ha là đường cao từ đỉnh A như hình vẽ:
Áp dụng công thức tính diện tích thường, ta có công thức tính diện tích tam giác cân:
3. Tính diện tích tam giác đều
Tam giác đều ABC có ba cạnh bằng nhau, a là độ dài các cạnh như hình vẽ:
Áp dụng định lý Heron để suy ra, ta có công thức tính diện tích tam giác đều:
4. Tính diện tích tam giác vuông
Tam giác ABC vuông tại B, a, b là độ dài hai cạnh góc vuông:
Xem thêm : Quê quán là gì? Phân biệt nguyên quán, quê quán và trú quán
Áp dụng công thức tính diện tích thường cho diện tích tam giác vuông với chiều cao là 1 trong 2 cạnh góc vuông và cạnh đáy là cạnh còn lại.
Công thức tính diện tích tam giác vuông:
5. Tính diện tích tam giác vuông cân
Tam giác ABC vuông cân tại A, a là độ dài hai cạnh góc vuông:
Áp dụng công thức tính diện tích tam giác vuông cho diện tích tam giác vuông cân với chiều cao và cạnh đáy bằng nhau, ta có công thức:
6. Công thức tính diện tích tam giác trong hệ tọa độ Oxyz
Về mặt lý thuyết, ta đều có thể dử dụng các công thức trên để tính diện tích tam giác trong không gian hay trong không gian Oxyz. Tuy nhiên như vậy sẽ gặp một số khó khăn trong tính toán. Do đó trong không gian Oxyz, người ta thường tính diện tích tam giác bằng cách sử dụng tích có hướng.
Trong không gian Oxyz, cho tam giác ABC. Diện tích tam giác ABC được tính theo công thức:
Ví dụ minh họa:
Trong không gian Oxyz, cho tam giác ABC có tọa độ ba đỉnh lần lượt là A(-1;1;2), B(1;2;3), C(3;-2;0). Tính diện tích tam giác ABC.
Bài giải:
Ta có:
Để tính diện tích tam giác bạn cần xác định loại tam giác đó là gì, từ đó tìm ra công thức tính diện tích chính xác và các yếu tố cần thiết để tính diện tích tam giác nhanh nhất.
Các loại tam giác
Tam giác thường: là tam giác cơ bản nhất, có độ dài các cạnh khác nhau, số đo góc trong cũng khác nhau. Tam giác thường cũng có thể bao gồm các trường hợp đặc biệt của tam giác.
Tam giác cân: là tam giác có hai cạnh bằng nhau, hai cạnh này được gọi là hai cạnh bên. Đỉnh của một tam giác cân là giao điểm của hai cạnh bên. Góc được tạo bởi đỉnh được gọi là góc ở đỉnh, hai góc còn lại gọi là góc ở đáy. Tính chất của tam giác cân là hai góc ở đáy thì bằng nhau.
Tam giác đều: là trường hợp đặc biệt của tam giác cân có cả ba cạnh bằng nhau. Tính chất của tam giác đều là có 3 góc bằng nhau và bằng 60.
Tam giác vuông: là tam giác có một góc bằng 90 (là góc vuông).
Tam giác tù: là tam giác có một góc trong lớn hơn lớn hơn 90(một góc tù) hay có một góc ngoài bé hơn 90 (một góc nhọn).
Tam giác nhọn: là tam giác có ba góc trong đều nhỏ hơn 90 (ba góc nhọn) hay có tất cả góc ngoài lớn hơn 90 (sáu góc tù).
Tam giác vuông cân: vừa là tam giác vuông, vừa là tam giác cân.
- Công thức tính chu vi hình tam giác
- Công thức tính đường cao trong tam giác thường, cân, đều, vuông
- Trọng tâm là gì? Công thức tính trọng tâm của tam giác
- Đường trung trực là gì?
Trên đây là tổng hợp các công thức tính diện tích tam giác thông dụng, tính diện tích tam giác trong hệ tọa độ oxyz. Nếu có bất kì băn khoăn, thắc mắc hay đóng góp, các bạn hãy để lại comment bên dưới để cùng trao đổi với Quantrimang.com nhé.
Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp