Vị trí tương đối của 2 đường tròn

A. Phương pháp giải

1. Định lý

Hai đường tròn(O) và (O’) cắt nhau thì R-r

Hai đường tròn tiếp xúc ngoài thì OO’ = R+r.

Nếu hai đường tròn (O) và (O’) tiếp xúc trong thì OO’=R-r.

a, Nếu hai đường tròn cắt nhau thì hai giao điểm đối xứng với nhau qua đường nối tâm, tức là đường nối tâm là đường trung trực của dây cung chung.

b, Nếu hai đường tròn tiếp xúc với nhau thì tiếp điểm nắm trên đường nối tâm.

B. Bài tập tự luận

Bài 1: Cho đường tròn tâm O, bán kính R. Lấy điểm A tùy ý trên (O). Vẽ đường tròn đường kính OA. Xác định vị trí tương đối của hai đường tròn.

Hướng dẫn giải

Gọi O’ là tâm đường tròn đường kính OA. Ta có O’ là trung điểm của OA và bán kính đường tròn(O’) là

R’ = OA/2 = R/2.

Độ dài đoạn nối tâm: d= OO’ = OA/2 = R/2.

Ta có: R – R’ = R/2 = d nên (O) và (O’) tiếp xúc trong tại A.

Bài 2: Trong mặt phẳng tọa độ xOy cho hai điểm A(-1;1) và B(3;0). Vẽ các đường tròn (A;r) và (B;r’).

Khi r=3 và r’=1, hãy xác định vị trí tương đối của hai đường tròn.

Hướng dẫn giải

Độ dài đoạn nối tâm d = AB = √(3+1)2 + 1 = √17 (1)

Tổng hai bán kính:

r + r’ = 3 + 1 = 4 (2)

Từ (1) và (2) ta thấy √17 > 4 nên hai đường tròn không giao nhau; hai đường tròn (A) và (B) nằm ngoài nhau.

Bài 3: Cho hai đường tròn (O;R) và (O’; R) cắt nhau tại M và N. Biết OO’=24cm, MN=10cm. Tính R.

Hướng dẫn giải

Gọi giao điểm của OO’ và MN là I. Vì OM = ON =O’M =O’N = R nên tứ giác OMO’N là hình thoi

=> OO’ ⊥ MN tại điểm I là trung điểm của mỗi đoạn OO’ và MN.

Do đó: IM = MN/2 = 5cm ; IO = OO’/2 = 12cm.

Áp dụng định lý Py-ta-go vào tam giác MIO ta có:

R = OM = √(IM2 + IO2) = 13

Vậy R = 13(cm)

Bài 4: Cho hai đường tròn (O;R) và (O’;R’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN với M thuộc (O), N thuộc (O’). Biết R=9cm, R’= 4cm. Tính độ dài đoạn MN.

Hướng dẫn giải

Ta có: OO’= OA + O’A = 9 + 4 =13(cm)

Kẻ OH ⊥ OM tại H

Suy ra tứ giác O’NMH là hình chữ nhật

Suy ra MH=O’N=4cm; MN=O’H

Suy ra OH=OM-MH=9-4=5(cm)

Áp dụng đình lí py-ta-go vào tam giác OO’H, ta có:

MN = O’H = √(OO’2 – OH2) = 12 (cm)

Vậy MN = 12cm.

Tham khảo thêm các Chuyên đề Toán lớp 9 khác:

  • Tính chất của hai tiếp tuyến cắt nhau
  • Vị trí tương đối của 2 đường tròn
  • Ôn tập chương 1

Mục lục các Chuyên đề Toán lớp 9:

  • Chuyên đề Đại Số 9
  • Chuyên đề: Căn bậc hai
  • Chuyên đề: Hàm số bậc nhất
  • Chuyên đề: Hệ hai phương trình bậc nhất hai ẩn
  • Chuyên đề: Phương trình bậc hai một ẩn số
  • Chuyên đề Hình Học 9
  • Chuyên đề: Hệ thức lượng trong tam giác vuông
  • Chuyên đề: Đường tròn
  • Chuyên đề: Góc với đường tròn
  • Chuyên đề: Hình Trụ – Hình Nón – Hình Cầu

Săn SALE shopee Tết:

  • Đồ dùng học tập giá rẻ
  • Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
  • Tsubaki 199k/3 chai
  • L’Oreal mua 1 tặng 3
  • Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án