TOÁN LỚP 6 – SỐ NGUYÊN TỐ – HỢP SỐ

frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="">
Video 6 có phải là số nguyên tố không

Ngày đăng: 01/11/2022

Cộng đồng zalo giải đáo bài tập

Các bạn học sinh tham gia nhóm zalo để trao đổi giải đáp bài tập nhé

Con sinh năm 2009 https://zalo.me/g/cieyke829 Con sinh năm 2010 https://zalo.me/g/seyfiw173 Con sinh năm 2011 https://zalo.me/g/jldjoj592 Con sinh năm 2012 https://zalo.me/g/ormbwj717 Con sinh năm 2013 https://zalo.me/g/lxfwgf190 Con sinh năm 2014 https://zalo.me/g/bmlfsd967 Con sinh năm 2015 https://zalo.me/g/klszcb046

LỚP 6 – SỐ NGUYÊN TỐ – HỢP SỐ

Số nguyên tố, hợp số là kiến thức mới mà lên lớp 6 các em học sinh sẽ đươc tiếp cận. Vậy thì để hiểu số nguyên tố là gì, hợp số là gì thì chúng ta hãy cùng tìm hiểu trong tài liệu này!

A. Lý thuyết:

  1. Số nguyên tố – Hợp số:

Số nguyên tố: Là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó (Chỉ có 2 ước là 1, chính nó).

VD: $2;3;5;7;9;13;17;19;…$

Hợp số: Là số tự nhiên lớn hơn 1, có nhiều hơn hai ước (Có thêm 1 ước khác 1 và chính nó).

* Lưu ý:

– Số 0 và số 1 không phải là số nguyên tố, cũng không phải là hợp số.

– Số 2 là số nguyên tố nhỏ nhất và cũng là số nguyên tố chẵn duy nhất. Như vậy, trừ số 2, mọi số nguyên tố đều là số lẻ. Nhưng ngược lại, một số lẻ chưa chắc là số nguyên tố.

– Để khẳng định một số là hợp số, ta thường sử dụng các dấu hiệu chia hết (2,3,5,8,…) để tìm ra 1 ước khác 1 và chính nó.

– Những số: 2; 3; 5; 7; 11; 13; 17; 19; 23;… là những số nguyên tố. Có vô số số nguyên tố.

Bảng số nguyên tố nhỏ hơn 100 (HS nên thuộc để nhận diện).

Screenshot_47

  1. Phân tích 1 số ra thừa số nguyên tố (tích các số nguyên tố).

VD: Ta thấy

* Cách phân tích 1 số ra thừa số nguyên tố (tích các số nguyên tố).

Cách 1: Sơ đồ cây.

Vậy: $24=2.2.2.3={{2}^{3}}.3$

Cách 2: Sơ đồ cột (Sử dụng dấu hiệu chia hết cho các số 2,3,5,… ), kiểm tra các ước dễ nhận thấy nhất: 2,3,5,…

Screenshot_50

Vậy: $24=2.2.2.3={{2}^{3}}.3$.

B. Các dạng bài tập:

  1. Dạng 1: Phân tích một số ra tích các thừa số nguyên tố

Câu 1. Phân tích các số sau thành tích các số nguyên tố theo sơ đồ cây hoặc sơ đồ cột

  1. a) 37 b) 84 c) 120 d) 1000.

Screenshot_51

Câu 2. Phân tích các số sau thành tích các số nguyên tố

  1. a) ${{4}^{2}}{{.6}^{3}}.12$ b) ${{9}^{2}}{{.15}^{2}}$ c) ${{100.20}^{3}}$ d) ${{25.6}^{5}}{{.8}^{2}}{{.27}^{3}}$

Screenshot_52

  1. Dạng 2: Toán có lời văn

Câu 3. Khối lớp 6 có 70 học sinh. Thầy Long muốn chia lớp thành các nhóm để thực hiện các dự án học tập nhỏ. Biết rằng các nhóm đều có số người lẻ, bằng nhau, là số nguyên tố. Hỏi mỗi nhóm có thể có bao nhiêu người.

HD:

Số người trong 1 nhóm, là số nguyên tố lẻ và là ước của 70:

$70=10.7=2.5.7$ có 2 ước nguyên tố lẻ, thỏa mãn là 5;7.

Vậy thầy Long có 2 cách chia, mỗi nhóm có thể có 5 người hoặc 7 người.

Câu 4. Trong nghi lễ thượng cờ lúc 6h sáng tại quảng trường Ba Đình, đội tiêu binh có 25 người gồm 1 sỹ quan chỉ huy và các chiến sĩ. Hỏi có bao nhiêu cách sắp xếp các chiến sĩ thành các hàng sao cho mỗi hàng có số người như nhau và lớn hơn 5.

HD:

+ Số chiến sĩ: 24

+ Số chiến sĩ trong 1 hàng, là ước lớn hơn 5 của 24: 6;8;12;24.

Vậy có thể có 4 cách sắp xếp ( hàng 6 người, hoặc hàng 8 người, hoặc ….).

  1. Dạng 3: Chỉ ra một số là số là hợp số.

PP: Chỉ ra ước khác 1 và chính nó, dựa vào dấu hiệu chia hết

Câu 5. Với $nin {{N}^{*}}$, các số sau là hợp số hay số nguyên tố?

  1. a) $A=20n+5$ b) $B=12n+3$ c) $C=27n+15$

HD:

  1. a) $20n+5vdots 5,,,20n+5>5$ nên A chia hết cho 5, lớn hơn 5 nên A là hợp số.
  2. b) $B=12n+3vdots 3,12n+3>3Rightarrow B$: là hợp số.
  3. c) $C=27n+15vdots 3,,,,27n+15>3Rightarrow C$ là hợp số.

Câu 6. Chứng minh rằng các số sau là hợp số:

  1. a) $A={{17.5}^{18}}+{{5}^{20}}+21$
  2. b) $B={{93.7}^{28}}-{{7}^{30}}-33$

HD:

  1. a) $A={{17.5}^{18}}+{{5}^{20}}+21={{5}^{18}}.left( 17+{{5}^{2}} right)+21={{5}^{18}}.42+21vdots 21$
  2. b) [B={{93.7}^{28}}-{{7}^{30}}-33={{7}^{28}}left( 93-{{7}^{2}} right)-33={{7}^{28}}.44-33vdots 11]

  1. Dạng 4: Tìm số tự nhiên để một biểu thức là số nguyên tố.

PP: Số nguyên tố chỉ có ước là 1 và chính nó nên ước bé hơn bằng 1. Ước lớn hơn là số nguyên tố.

Câu 7. Tìm các số tự nhiên n biết các số sau là số nguyên tố.

  1. a) $A=nleft( n+1 right)$ b) $B={{n}^{2}}+2n$

HD:

Chú ý: Tập hợp số nguyên tố, thường kí hiệu P.

  1. a) $A=nleft( n+1 right)$ có 2 ước là n và n+1; n

Do số nguyên tố chỉ có 2 ước là 1 và chính nó nên, để A là số nguyên tố thì:

Vậy n=1.

  1. b) $B={{n}^{2}}+2.n=nleft( n+2 right)$. Có 2 ước là n và n+2;n

Do số nguyên tố chỉ có 2 ước là 1 và chính nó nên, để B là số nguyên tố thì:

Vậy n=1.

Câu 8. Tìm các số tự nhiên n biết các số sau là số nguyên tố.

  1. a) $A=left( 2n+5 right)left( 3n+1 right)$ b) $B=(n-2)({{n}^{2}}+n-5)$

HD:

  1. a) $A=left( 2n+5 right)left( 3n+1 right)$

Cách 1: Giống bài 1, ta có 2 trường hợp do chưa biết trong 2 số 2n+5 và 3n+1 số nào nhỏ hơn.

Cách 2:

Screenshot_56

Các bài toán vận dụng về “Số nguyên tố – Hợp số” đã được thầy giáo Trần Tuấn Việt hướng dẫn trong video, phụ huynh và các em tham khảo để hiểu rõ hơn dạng bài tập này ạ.

Để đăng kí học trực tuyến qua video, qua zoom, anh chị phụ huynh vui lòng liên hệ qua SĐT thầy Long 0832646464 để được tư vấn!

Hệ thống Vinastudy chúc các con học tập thật tốt !

Tác giả: Vinastudy

Cộng đồng zalo giải đáo bài tập

Các bạn học sinh tham gia nhóm zalo để trao đổi giải đáp bài tập nhé

Con sinh năm 2009 https://zalo.me/g/cieyke829 Con sinh năm 2010 https://zalo.me/g/seyfiw173 Con sinh năm 2011 https://zalo.me/g/jldjoj592 Con sinh năm 2012 https://zalo.me/g/ormbwj717 Con sinh năm 2013 https://zalo.me/g/lxfwgf190 Con sinh năm 2014 https://zalo.me/g/bmlfsd967 Con sinh năm 2015 https://zalo.me/g/klszcb046

********************************

Hỗ trợ học tập:

_Kênh Youtube:http://bit.ly/vinastudyvn_tieuhoc

_Facebook fanpage:https://www.facebook.com/767562413360963/

_Hội học sinh Vinastudy Online:https://www.facebook.com/groups/online.vinastudy.vn/