Bài viết này Vted trình bày cho các em một công thức xác định nhanh toạ độ tâm của đường tròn nội tiếp tam giác trong bài toán Hình giải tích không gian Oxyz.
Chú ý với I là tâm nội tiếp tam giác ABC ta có đẳng thức véctơ sau đây:
Bạn đang xem: Xem tài liệu
[BC.overrightarrow {IA} + CA.overrightarrow {IB} + AB.overrightarrow {IC} = overrightarrow 0 (*)]
Ta đã biết điểm $I$ thoả mãn đẳng thức véctơ:
${{a}_{1}}overrightarrow{I{{A}_{1}}}+{{a}_{2}}overrightarrow{I{{A}_{2}}}+…+{{a}_{n}}overrightarrow{I{{A}_{n}}}=overrightarrow{0},left( {{a}_{1}}+{{a}_{2}}+…+{{a}_{n}}ne 0 right)$
được xác định theo công thức: $left{ begin{gathered} {x_I} = dfrac{{{a_1}{x_{{A_1}}} + {a_2}{x_{{A_2}}} + … + {a_n}{x_{{A_n}}}}}{{{a_1} + {a_2} + … + {a_n}}} hfill \ {y_I} = dfrac{{{a_1}{y_{{A_1}}} + {a_2}{y_{{A_2}}} + … + {a_n}{y_{{A_n}}}}}{{{a_1} + {a_2} + … + {a_n}}} hfill \ {z_I} = dfrac{{{a_1}{z_{{A_1}}} + {a_2}{z_{{A_2}}} + … + {a_n}{z_{{A_n}}}}}{{{a_1} + {a_2} + … + {a_n}}} hfill \ end{gathered} right.$
Áp dụng vào bài toán với $I$ là tâm đường tròn nội tiếp tam giác $ABC$ thoả mãn đẳng thức (*) ta có:
[left{ begin{gathered} {x_I} = dfrac{{BC.{x_A} + CA.{x_B} + AB.{x_C}}}{{BC + CA + AB}} hfill \ {y_I} = dfrac{{BC.{y_A} + CA.{y_B} + AB.{y_C}}}{{BC + CA + AB}} hfill \ {z_I} = dfrac{{BC.{z_A} + CA.{z_B} + AB.{z_C}}}{{BC + CA + AB}} hfill \ end{gathered} right..]
Ví dụ 1: Trong không gian $Oxyz,$ cho tam giác $ABC$ với toạ độ các đỉnh $A(1;1;1),B(4;1;1),C(1;1;5).$ Tìm toạ độ điểm $I$ là tâm đường tròn nội tiếp tam giác $ABC.$
A. $I(-2;-1;-2).$
B. $I(2;-1;2).$
C. $I(2;1;2).$
D. $I(1;2;2).$
Giải. Ta có $BC=5, CA=4, AB=3$. Do đó
[left{ begin{gathered} {x_I} = dfrac{{BC.{x_A} + CA.{x_B} + AB.{x_C}}}{{BC + CA + AB}} = dfrac{{5.1 + 4.4 + 3.1}}{{5 + 4 + 3}} = 2 hfill \ {y_I} = dfrac{{BC.{y_A} + CA.{y_B} + AB.{y_C}}}{{BC + CA + AB}} = dfrac{{5.1 + 4.1 + 3.1}}{{5 + 4 + 3}} = 1 hfill \ {z_I} = dfrac{{BC.{z_A} + CA.{z_B} + AB.{z_C}}}{{BC + CA + AB}} = dfrac{{5.1 + 4.1 + 3.5}}{{5 + 4 + 3}} = 2 hfill \ end{gathered} right..]
Vậy $boxed{I(2;1;2){text{ (C)}}}.$
Ví dụ 2: Trong không gian $Oxyz,$ cho hai điểm $Aleft( 2;2;1 right),Bleft( a;b;c right).$ Biết rằng $Ileft( 0;1;1 right)$ là tâm đường tròn nội tiếp tam giác $OAB$ và $OB=4,AB=5.$ Giá trị của $a+b+c$ bằng
Xem thêm : Thị trường cạnh tranh là gì? Ví dụ thị trường cạnh tranh
A. $dfrac{4}{3}.$
B. $-dfrac{8}{3}.$
C. $-dfrac{4}{3}.$
D. $dfrac{8}{3}.$
Giải. Ta có $OB.overrightarrow{IA}+OA.overrightarrow{IB}+AB.overrightarrow{IO}=overrightarrow{0}Leftrightarrow 4overrightarrow{IA}+3overrightarrow{IB}+5overrightarrow{IO}=overrightarrow{0}$
$Rightarrow {{x}_{I}}=dfrac{4{{x}_{A}}+3{{x}_{B}}+5{{x}_{O}}}{4+3+5}Rightarrow {{x}_{B}}=dfrac{12{{x}_{I}}-left( 5{{x}_{O}}+4{{x}_{A}} right)}{3}=-dfrac{8}{3}$
Tương tự ${{y}_{B}}=dfrac{12{{y}_{I}}-left( 5{{y}_{O}}+4{{y}_{A}} right)}{3}=dfrac{4}{3};{{z}_{B}}=dfrac{12{{z}_{I}}-left( 5{{z}_{O}}+4{{z}_{A}} right)}{3}=dfrac{8}{3}Rightarrow a+b+c=dfrac{4}{3}.$ Chọn đáp án A.
Ví dụ 3: Trong không gian $Oxyz,$ cho hai điểm $A(2;2;1),Bleft( -dfrac{8}{3};dfrac{4}{3};dfrac{8}{3} right).$ Đường thẳng đi qua tâm đường tròn nội tiếp tam giác $AOB$ và vuông góc với mặt phẳng $(AOB)$ có phương trình là
A. $dfrac{x+1}{1}=dfrac{y-3}{-2}=dfrac{z+1}{2}.$
C. $dfrac{x+dfrac{1}{3}}{1}=dfrac{y-dfrac{5}{3}}{-2}=dfrac{z-dfrac{11}{6}}{2}.$
B. $dfrac{x+1}{1}=dfrac{y-8}{-2}=dfrac{z-4}{2}.$
D. $dfrac{x+dfrac{2}{9}}{1}=dfrac{y-dfrac{2}{9}}{-2}=dfrac{z+dfrac{5}{9}}{2}.$
Giải. Ta có $OA=3,OB=4,AB=5.$ Do đó tâm nội tiếp $I$ của tam giác $AOB$ có toạ độ là
[{{x}_{I}}=dfrac{3{{x}_{B}}+4{{x}_{A}}+5{{x}_{O}}}{3+4+5}=dfrac{-8+8+0}{12}=0]
[{{y}_{I}}=dfrac{3{{y}_{B}}+4{{y}_{A}}+5{{y}_{O}}}{3+4+5}=dfrac{4+8+0}{12}=1]
[{{z}_{I}}=dfrac{3{{z}_{B}}+4{{z}_{A}}+5{{z}_{O}}}{3+4+5}=dfrac{8+4+0}{12}=1]
Véctơ chỉ phương của đường thẳng này là $overrightarrow{u}=left[ overrightarrow{OA},overrightarrow{OB} right]//(1;-2;2).$
Xem thêm : 2 cách làm sữa đậu đen bằng máy đơn giản tại nhà
Do đó đường thẳng cần tìm là $left{ begin{gathered} x=t hfill \ y=1-2t hfill \ z=1+2t hfill \ end{gathered} right.$ qua điểm $(-1;3;-1).$ Đối chiếu các đáp án chọn A.
$r=dfrac{S}{p}=dfrac{dfrac{1}{2}left| left[ overrightarrow{AB},overrightarrow{AC} right] right|}{dfrac{AB+BC+CA}{2}}=dfrac{left| left[ overrightarrow{AB},overrightarrow{AC} right] right|}{AB+BC+CA}.$
Ví dụ 1: Trong không gian $Oxyz,$ cho $A(2;-1;6),B(-3;-1;-4),C(5;-1;0).$ Bán kính đường tròn nội tiếp tam giác $ABC$ bằng
A. $sqrt{5}$
B. $sqrt{3}$
C. $4sqrt{2}$
D. $2sqrt{5}$
Giải. Ta có $BC=sqrt{{{8}^{2}}+{{4}^{2}}}=4sqrt{5},CA=sqrt{{{3}^{2}}+{{6}^{2}}}=3sqrt{5},AB=sqrt{{{5}^{2}}+{{10}^{2}}}=5sqrt{5}$ nên tam giác $ABC$ vuông tại $C,$ do đó bán kính nội tiếp $r=dfrac{S}{p}=dfrac{CB.CA}{AB+BC+CA}=dfrac{60}{12sqrt{5}}=sqrt{5}.$ Chọn đáp án A.
Tự luyện:
Câu 1. Trong không gian $Oxyz,$ cho ba điểm $Aleft( -1;0;0 right),Bleft( 5;0;0 right),Cleft( 2;0;4 right).$ Xác định toạ độ tâm đường tròn nội tiếp tam giác $ABC$ và tính bán kính đường tròn nội tiếp tam giác $ABC.$
Đáp án: $Ileft( 2;0;dfrac{3}{2} right),r=dfrac{3}{2}.$
Câu 2: Trong không gian [Oxyz] cho 3 điểm [Aleft( -3;1;0 right)], [Bleft( -6;1;4 right)], [Cleft( -3;13;0 right)]. Bán kính [r] của đường tròn nội tiếp tam giác [ABC] bằng
A. [2.]
B. [dfrac{3}{2}.]
C. [dfrac{5}{2}.]
D. [3.]
Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp
Con số may mắn hôm nay 23/11/2024 theo năm sinh: Nhặt TIỀN từ con số…
Tử vi thứ bảy ngày 23/11/2024 của 12 con giáp: Tuổi Thìn chán nản, tuổi…
Vận may của 4 con giáp đang ngày càng xuống dốc. Cuối tuần này (23-24/11),…
Con số cuối cùng trong ngày sinh dự đoán con người sẽ GIÀU CÓ, sống…
Cuối tuần này (23-24/11), 4 con giáp sẽ gặp nhiều may mắn và thành công…
Tử vi hôm nay – Top 3 con giáp thịnh vượng nhất ngày 22/11/2024