Trong chương trình toán hình học lớp 12 và nội dung của kỳ thi THPT Quốc Gia. Thì các kiến thức về khối đa diện là rất quan trọng và chiếm một phần kiến thức rất lớn.
Trong phạm trù kiến thức về khối đa diện thì việc tính thể tích tứ diện đều là một nội dung không thể nào bỏ qua. Hiểu được tầm quan trọng của nó, ngay sau đây ITQNU xin được chia sẻ đến các bạn học sinh những kiến thức về tứ diện đều. Cũng như các cách tính thể tích tứ diện đều một cách chính xác nhất.
Bạn đang xem: TỨ DIỆN ĐỀU – Công thức tính thể tích tứ diện đều cạnh a
Đầu tiên chúng ta sẽ phân ra 2 định nghĩa riêng biệt. Bao gồm khái niệm về hình tứ diện và hình tứ diện đều. Do đó, để giúp các bạn có thể hiểu chính xác hơn. Thì chúng ta sẽ đi định nghĩa từng loại hình sau đây:
Hình tứ diện là hình có bốn đỉnh và thường được đặt với ký hiệu là A, B, C, D. Trong đó, với bất kỳ điểm nào trong số các điểm A, B, C, D cũng được xem là đỉnh của tứ diện. Mặt tam giác đối diện với đỉnh sẽ được gọi là mặt đáy. Ví dụ, nếu chọn B là đỉnh của tứ diện thì mặt đáy sẽ là (ACD).
Hay còn hiểu theo một cách gắn gọn khác thì trong không gian nếu cho 4 điểm không đồng phẳng gồm A, B, C, D. Thì khi đó khối đa diện có 4 đỉnh A, B, C, D gọi là khối tứ diện. Và được ký hiệu là ABCD.
Nếu một hình tứ diện có các mặt bên là các tam giác đều thì đây được gọi là hình tứ diện đều. Và tứ diện đều được xem là một trong 5 khối đa diện đều.
Tứ diện đều có các tính chất như sau:
Bất kỳ khi giải một bài toán liên quan tới hình tứ diện đều nào cũng vậy. Điều quan trọng nhất là chúng ta phải vẽ chính xác hình tứ diện đều. Từ đó chúng ta mới có một cái hình tổng thể và đưa ra các phương pháp giải chính xác nhất. Và sau đây sẽ là cách vẽ hình tứ diện đều chi tiết nhất:
Sau khi các bạn đã biết cách vẽ hình tứ diện đều rồi. Thì tiếp theo bài học chúng ta sẽ cùng nhau tìm hiểu về công thức tính thể tích tứ diện đều nhé.
Một tứ diện đều sẽ có 6 cạnh bằng nhau và 4 mặt tam giác đều sẽ có các công thức tính thể tích như sau:
Ví dụ minh họa
Tính thể tích khối tứ diện đều cạnh a.
Lời giả:
Giả sử ABCD là khối tứ diện đều cạnh a. G là trọng tâm tam giác BCD (hình trên).
Xem thêm : Bị nợ xấu vẫn vay được tiền từ ngân hàng: Có đúng không?
Cuối cùng tổng kết lại thì để tính thể tích tứ diện đều cạnh a. Thì ta sẽ có công thức sau đây:
Quy tắc tìm các mặt phẳng đối xứng. Trong tứ diện đều, do có tính chất đối xứng nhau. Do đó ta cứ đi từ trung điểm các cạnh ra mà tìm. Nếu bạn chọn một mặt phẳng đối xứng, hãy đảm bảo rằng các điểm còn lại được chia đều về hai phía
Ví dụ 1: tìm số mặt phẳng đối xứng của hình tứ diện đều.
Lời giải: Các mặt phẳng đối xứng của hình tứ diện đều là các mặt phẳng chứa một cạnh và qua trung điểm cạnh đối diện. Vì vậy, hình tứ diện đều sẽ có 6 mặt phẳng đối xứng.
Ví dụ 2: Cho hình chóp đều S.ABCD (đáy là hình vuông), đường SA vuông góc với mặt phẳng (ABCD). Xác định hình chóp này có mặt đối xứng nào.
Lời giải:
Ta có: BD vuông góc với AC, BD vuông góc với SA. Suy ra, BD vuông góc với (SAC). Từ đó ta suy ra (SAC) là mặt phẳng trung trực của BD. Ta kết luận rằng, (SAC) là mặt đối xứng của hình chóp và đây là mặt phẳng duy nhất.
Như vậy, ITQNU vừa chia sẻ đến bạn kiến thức về tứ diện đều. Cũng như cách tính thể tích tứ diện đều. Trong chương trình toán hình học lớp 12 và nội dung của kỳ thi THPT Quốc Gia. Thì kiến thức về tứ diện đều là quan trọng. Hy vọng qua bài viết, các bạn học sinh có thêm nhiều kiến thức về tứ diện đều.
Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp
This post was last modified on 21/01/2024 02:13
Tử vi tháng 12/2024 Canh Tý: Cuối năm bận rộn, nhìn đâu cũng thấy cơ…
Top 3 con giáp có SỐ ĐỎ tha hồ khai thác vận may giữa tuần…
Vận mệnh người tuổi Thìn theo cung hoàng đạo: Bạn có tham vọng hay thích…
Tử vi hôm nay: Danh sách 4 con giáp nắm bắt cơ hội và đạt…
Con số may mắn hôm nay 20/11/2024 theo năm sinh Chuẩn số VÀNG, dễ gặp…
Tử vi thứ Tư ngày 20/11/2024 của 12 con giáp: Hổ nóng nảy, Mão tự…