1. Cách chứng minh Tam giác vuông:
Để chứng minh một tam giác là tam giác vuông có tất cả 5 như sau:
– Chứng minh trong một tam giác có một góc bằng 90 độ
Bạn đang xem: Tam giác vuông là gì? Cách chứng minh tam giác vuông?
– Chứng minh trong một tam giác có tổng hai góc nhọn bằng 90 độ
– Chứng minh trong một tam giác có bình phương độ dài một cạnh bằng tổng bình phương độ dài hai cạnh kia. Áp dụng định lý Pitago.
– Chứng minh trong một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy.
– Chứng minh trong một tam giác nội tiếp một nửa đường tròn (có 1 cạnh trùng đường kính).
* Cách 1: Để chứng minh một tam giác là tam vuông ta phải chứng minh tam giác đó có tổng 2 góc nhọn bằng 90 độ (2 góc nhọn phụ nhau).
Ví dụ 1: Tam giác ABC có góc C + B = 90°
⇒ Tam giác ABC vuông tại A.
* Cách 2: Để chứng minh một tam giác là tam giác vuông ta chứng minh tam giác đó có bình phương độ dài một cạnh bằng tổng bình phương độ dài hai cạnh còn lại.
Ví dụ 2: Tam giác ABC có AC2 + AB2 = BC2
⇒ Tam giác ABC vuông tại A.
* Cách 3: Để chứng minh một tam giác là tam vuông ta phải chứng minh tam giác đó có đường trung tuyến ứng với bằng nửa cạnh ấy (cạnh huyền).
Ví dụ 3: Tam giác ABC có M là trung điểm BC, biết AM = MB = MC = ½ BC
=> Tam giác ABC vuông tại A.
* Cách 4: Chứng minh trong tam giác có một góc bằng 90 độ (2 góc còn lại tổng bằng 90 độ).
+ Cách chứng minh: Đưa góc cần chứng minh vào góc của một tứ giác rồi chứng minh tứ giác đó là hình chữ nhật, hình vuông, hoặc góc tạo bởi 2 đường chéo của hình thoi, hình vuông.
* Cách 5: Để chứng minh một tam giác là tam vuông ta phải chứng minh tam giác đó nội tiếp đường tròn và có một cạnh là đường kính.
Ví dụ 4: Tam giác MAB nội tiếp đường tròn đường kính AB
=> Tam giác MAB vuông tại M.
2. Định nghĩa về tam giác vuông:
Tam giác vuông là tam giác chỉ có một góc vuông ( tức là 1 góc 90 độ)
Tam giác ABC vuông tại A:
+ Hai cạnh AB và AC kề với góc vuông gọi là cạnh bên ( hay còn gọi là cạnh góc vuông)
+ Cạnh BC đối diện với góc vuông gọi là cạnh huyền.
3. Định lý Pytago liên quan đến tam giác vuông:
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh còn lại.
4. Đường trung tuyến trong tam giác vuông:
Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.
5. Dấu hiệu nhận biết tam giác vuông:
• Tam giác có một góc vuông là tam giác vuông.
• Tam giác có hai góc nhọn phụ nhau là tam giác vuông.
• Tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia là tam giác vuông.
• Tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy là tam giác vuông.
• Tam giác nội tiếp đường tròn có một cạnh là đường kính của đường tròn là tam giác vuông.
6. Cách dựng tam giác ABC vuông tại A:
Cho trước cạnh huyền BC = 5 cm và cạnh góc vuông AC = 3 cm.
– Dựng đoạn AC = 3 cm
– Dựng góc CAx bằng 90 độ.
– Dựng cung tròn tâm C bán kinh 5 cm cắt Ax tại B. Nối BC ta có Δ ABC cần dựng.
7. Tính chất của Tam giác vuông:
– Tính chất 1: Trong tam giác vuông, hai góc nhọn phụ nhau (do có 1 góc bằng 90 độ).
Ví dụ: Tam giác DAB vuông tại D
=> Góc A + B = 90°
– Tính chất 2: Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh còn lại.
Ví dụ: Tam giác DAB vuông tại D
=> DA2 + DB2 = AB2
– Tính chất 3: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một phần hai cạnh huyền.
Xem thêm : Nhân số
Ví dụ: Tam giác DAB vuông tại D có M là trung điểm AB
=> DM = DA = B = ½ AB
8. Bài tập về chứng minh tam giác vuông:
Bài 1: Cho tam giác ABC vuông tại A. Biết AC=57. Đường cao là AH = 15cm. Hãy áp dụng hệ thức lượng trong tam giác vuông, hãy tính HB, HC.
Bài 2: Cho tam giác ABC vuông tại A. Trong đó AB = 12cm, AC = 16cm, phân giác AD, đường cao AM. Tính MD, MB, MC.
Bài 3: Cho ∆ABC vuông tại A. Vẽ đường cao AH, hãy tính chu vi ∆ABC biết AH = 14cm, HB, HC=14.
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 20cm, HC = 9cm. Tính độ dài đường cao AH.
Bài 5: Cho tam giác ABC vuông tại A có BD là đường phân giác góc B. Biết rằng AD = 2cm; BD = 12 cm. Tính độ dài của cạnh BC.
Bài 6: Cho tam giác ABC biết góc B = 60 độ, BC = 8cm; AB + AC = 12cm. Tính độ dài cạnh AB.
Bài 7: Cho hình thang cân ABCD. Trong đó có đáy lớn của hình thang là CD = 10cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên của hình thang. Tính độ dài đường cao của hình thang cân ABCD.
Bài 8:
a. Cho tam giác ABC biết rằng Góc B = 60 độ, Góc C = 50 độ, AC = 35cm . Hãy tính diện tích tam giác ABC.
b. Cho tứ giác ABCD có góc A = Góc D = 90 độ, Góc C = 40 độ, AB = 4cm, AD=3cm. Hãy tính diện tích tứ giác ABCD.
c. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Cho biết AC=4. BD=5, Góc AOB = 50 độ. Tính diện tích tứ giác ABCD bằng công thức lượng giác.
Bài 9: Cho ∆ABC vuông tại A, đường cao là AH, biết rằng chu vi tam giác AHB = 40cm, chu vi tam giác ACH = 5dm. Tính chu vi tam giác ABC và cạnh BH, CH.
Bài 10: Chu vi của một tam giác bằng 120cm. Độ dài các cạnh tỉ lệ lần lượt với 8, 15, 17.
a) Chứng minh rằng tam giác là một tam giác vuông.
b) Tính khoảng cách từ giao điểm của ba đường phân giác đến mỗi cạnh của tam giác.
Mọi người cũng hỏi
Câu hỏi 1: Tam giác vuông là gì?
Trả lời 1: Tam giác vuông là một tam giác có một góc vuông, tức là một góc bằng 90 độ.
Câu hỏi 2: Cách chứng minh một tam giác vuông khi đã biết độ dài của ba cạnh?
Trả lời 2: Một trong những cách chứng minh tam giác vuông là sử dụng Định lý Pythagoras. Nếu trong tam giác ABC, cạnh dài nhất là c, và a, b lần lượt là độ dài hai cạnh còn lại, nếu a^2 + b^2 = c^2, thì tam giác ABC là tam giác vuông tại A, B hoặc C.
Câu hỏi 3: Cách chứng minh một tam giác vuông khi biết các góc và khả năng bằng nhau của chúng?
Trả lời 3: Nếu trong tam giác ABC, có một góc bằng 90 độ, và các góc còn lại có khả năng bằng nhau với các góc của một tam giác vuông (45 độ và 45 độ), thì tam giác ABC cũng là tam giác vuông.
Câu hỏi 4: Cách chứng minh một tam giác vuông bằng phép đặt tâm giác trong một hình tròn?
Trả lời 4: Một tam giác có một góc vuông khi và chỉ khi nó có một cạnh là đường đường kính của một hình tròn. Do đó, nếu ta có một tam giác ABC và AB là đường đường kính của một hình tròn tâm O, thì tam giác ABC là tam giác vuông tại C.
Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp