Mời các em xem lại công thức nghiệm của phương trình bậc hai:
Các em nhớ nhấn SUBCRIBE (ĐĂNG KÍ) trong youtube để nhận thông báo khi có video bài học mới nhé!
Bạn đang xem: Điều kiện để phương trình bậc hai có nghiệm dương, âm, trái dấu
Cho phương trình (ax^2+bx+c=0) với (ane0.)
Hệ thức Vi-ét:
Nếu phương trình có hai nghiệm (x_1, x_2) thì [begin{cases}S=x_1+x_2=-dfrac{b}{a} P=x_1.x_2=dfrac{c}{a}end{cases}]
Xem thêm : Hiện tượng khuếch tán là gì? Phân biệt khuếch tán và thẩm thấu
(ta có thể dùng công thức nghiệm của phương trình bậc hai để chứng minh hệ thức này)
Điều kiện để có nghiệm dương, âm, trái dấu
- Phương trình có hai nghiệm phân biệt trái dấu: [x_1x_20), bởi vì khi (ac0)). Chú ý, ta có thể dùng (P
- Phương trình có hai nghiệm dương phân biệt: [0
0S>0P>0end{cases}] - Phương trình có hai nghiệm âm phân biệt: [x_1
0S0end{cases}] - Phương trình có hai nghiệm phân biệt cùng dấu : [Leftrightarrowbegin{cases}Delta>0P>0end{cases}]
Nếu chỉ yêu cầu hai nghiệm mà không cần phân biệt thì ta thay bằng (Delta ge 0).
Ví dụ 1. Tìm (m) để phương trình (x^2-5mx-3m+2=0) có hai nghiệm trái dấu.
Giải. Phương trình có hai nghiệm trái dấu khi và chỉ khi (1.(-3m+2)dfrac{2}{3}.)
Xem thêm : Soki Tium dụng cho trẻ mấy tháng? Cách dùng Soki Tium cho từng trường hợp
Ví dụ 2. Tìm (m) để phương trình (x^2-x+2(m-1)=0) có hai nghiệm dương phân biệt.
Giải. Phương trình có hai nghiệm dương phân biệt khi và chỉ khi (begin{cases} Delta > 0 S>0 P>0end{cases} Leftrightarrow begin{cases}1-8(m-1)>0 1>0 2(m-1)>0end{cases}) (Leftrightarrow begin{cases}m Ví dụ 3. Tìm (m) để phương trình (4x^2+2x+m-1=0) có hai nghiệm âm phân biệt. Giải. Phương trình có hai nghiệm âm phân biệt khi và chỉ khi (begin{cases} Delta’ > 0 S0end{cases} Leftrightarrow begin{cases}1-4(m-1)>0 -dfrac{2}{4}0end{cases}) (Leftrightarrow begin{cases}m Ví dụ 4. Tìm (m) để phương trình ((m^2+1)x-2(m+1)x+2m-1=0) có hai nghiệm trái dấu. Giải. Phương trình có hai nghiệm trái dấu khi và chỉ khi (a.c0 ; forall m)). (Leftrightarrow m Các khác: Phương trình có hai nghiệm trái dấu khi và chỉ khi (P0 ; forall m)). (Leftrightarrow m Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp