Điều kiện để hàm số đồng biến trên R

frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen="">
Video hàm số đồng biến trên r khi nào

Trong số các tính chất của hàm số, hàm số đồng biến là một khái niệm quan trọng, đặc biệt trong việc xác định sự thay đổi của hàm số theo biến số đầu vào. Điều kiện để một hàm số đồng biến trên tập số thực R mang trong mình những bí ẩn và ý nghĩa sâu xa, đòi hỏi sự tiếp cận và suy luận cẩn thận từ phía các nhà toán học và những người quan tâm đến toán học ứng dụng. Cùng tìm hiểu Điều kiện để hàm số đồng biến trên R qua bài viết sau.

1. Định lí về tính đồng biến nghịch biến

Cho hàm số y = f(x) có đạo hàm trên khoảng (a;b). Khi đó hàm số sẽ đồng biến và nghịch biến với:

– Hàm số y = f(x) đồng biến trên khoảng (a;b) khi và chỉ khi f’(x) ≥ 0 với mọi giá trị x thuộc khoảng (a;b). Dấu bằng xảy ra tại hữu hạn điểm.

– Hàm số y = f(x) nghịch biến trên khoảng (a;b) khi và chỉ khi f’(x) ≤ 0 với mọi giá trị x thuộc khoảng (a;b). Dấu bằng xảy ra tại hữu hạn điểm.

2. Một số trường hợp cụ thể chúng ta cần phải nhớ về điều kiện đơn điệu trên R

2.1 Đối với hàm số đa thức bậc 1:

– Hàm số y = ax + b (a ≠ 0) đồng biến trên ℝ khi và chỉ khi a > 0

– Hàm số y = ax + b (a ≠ 0) nghịch biến trên ℝ khi và chỉ khi a

2.2 Đối với hàm số đa thức bậc 3:

Đây là dạng bài toán thường gặp đối với hàm số đa thức bậc 3, hơn 90% các bài viết đều áp dụng cho hàm số bậc 3. Nên ta sẽ áp dụng như sau:

Xét hàm số y = ax3 + bx2 + cx + d ⇒ y’ = 3ax2 + 2bx + c

– TH1: a = 0 (nếu có tham số)

– TH2: a ≠ 0

2.3 Hàm số đa thức bậc chẵn không thể đơn điệu trên R được.

Ví dụ 1:

Cho hàm số y = x³ + 2(m-1)x² + 3x -2. Tìm m để hàm đã cho đồng biến trên R.

Lời giải:

Để y = x³ + 2(m-1)x² + 3x – 2 đồng biến trên R thì (m-1)² – 3.3 ≤ 0⇔ -3 ≤ m – 1 ≤3 ⇔ -2 ≤ m ≤ 4.

Các bạn cần lưu ý với hàm đa thức bậc 3 có chứa tham số ở hệ số bậc cao nhất thì chúng ta cần xét trường hợp hàm số suy biến.

Ví dụ 2:

Cho hàm số y = mx³ -mx² – (m + 4 )x + 2. Xác định m để hàm số đã cho nghịch biến trên R.

Lời giải:

Ta xét trường hợp hàm số suy biến. Khi m = 0, hàm số trở thành y = -x + 2. Đây là hàm bậc nhất nghịch biến trên R. Vậy m = 0 thỏa mãn yêu cầu bài toán.

Với m ≠ 0, hàm số là hàm đa thức bậc 3. Do đó hàm số nghịch biến trên R khi và chỉ khi m

Kết hợp 2 trường hợp ta được -3 ≤ m ≤ 0 thỏa mãn yêu cầu bài toán.