Vô nghiệm là gì? Phương trình vô nghiệm khi nào? Ví dụ?

1. Vô nghiệm là gì?

Vô nghiệm (tiếng Anh: “no solution”) là một thuật ngữ trong toán học, dùng để mô tả tình huống mà một phương trình hoặc hệ phương trình không có giá trị nào của biến thỏa mãn. Nó có nghĩa là không có giá trị của biến nào làm cho phương trình (hoặc hệ phương trình) đúng.

– Hệ phương trình:

2x + 3y = 8

4x – 6y = 16 Trong hệ phương trình này, không tồn tại cặp giá trị (x, y) nào làm cho cả hai phương trình cùng đúng, do đó hệ phương trình này cũng là vô nghiệm.

Khi một phương trình có vô nghiệm, điều đó có thể được chứng minh bằng cách dùng các phép biến đổi toán học để đưa phương trình về dạng dễ dàng kiểm tra. Nếu không thể tìm ra giá trị nào làm cho phương trình đúng, thì kết luận là phương trình vô nghiệm. Trong một số trường hợp, vô nghiệm có thể thể hiện tính không tồn tại của một vấn đề hay một trạng thái trong bài toán ứng dụng.

2. Phương trình vô nghiệm khi nào?

Phương trình và bất phương trình vô nghiệm xảy ra khi không có giá trị nào của biến thỏa mãn điều kiện để phương trình hoặc bất phương trình đúng. Dưới đây là cách xác định phương trình vô nghiệm và bất phương trình vô nghiệm cho các trường hợp khác nhau:

Phương trình bậc nhất một ẩn (ax + b = 0):

– Phương trình vô nghiệm khi a = 0 và b ≠ 0. Điều này xảy ra vì nếu a = 0 thì phương trình trở thành bx + b = 0, và không có giá trị của x khiến biểu thức này đúng.

Phương trình bậc hai một ẩn (ax^2 + bx + c = 0):

– Phương trình vô nghiệm khi a ≠ 0 và ∆

Công thức tính delta (∆) cho phương trình bậc hai: ∆ = b^2 – 4ac

Đối với bất phương trình ax^2 + bx + c > 0 hoặc ax^2 + bx + c

– Nếu a ≠ 0 và ∆

Công thức tính ∆’ cho phương trình bậc hai với hệ số b chẵn: ∆’ = ∆/4a

Nếu a ≠ 0 và hệ số b là số chẵn, thì khi tính ∆’ mà ∆

Tóm lại, phương trình và bất phương trình vô nghiệm xảy ra khi không có giá trị nào của biến thỏa mãn điều kiện để biểu thức trở thành đúng. Điều kiện để phương trình vô nghiệm là a = 0 trong phương trình bậc nhất, và a ≠ 0 và ∆

3. Ví dụ về phương trình vô nghiệm:

Ví dụ 1 về phương trình bậc nhất một ẩn: 2x + 3 = 2x + 5

Trong ví dụ này, ta thấy cả hai vế của phương trình đều có x, nên khi giải bài toán, ta sẽ rút gọn như sau: 2x – 2x + 3 = 2x – 2x + 5 3 = 5 Vì phương trình trở thành 3 = 5, điều này là không đúng, vậy phương trình không có nghiệm (vô nghiệm).

Ví dụ 2 về phương trình bậc hai một ẩn: x^2 + 4x + 8 = 0

Trong ví dụ này, ta sử dụng công thức tính delta (∆) như sau: ∆ = 4^2 – 4 * 1 * 8 = 16 – 32 = -16 Vì ∆

Ví dụ 3 về phương trình bậc hai một ẩn: 3x^2 + 6x + 9 = 0

Ta tính delta (∆) như sau: ∆ = 6^2 – 4 * 3 * 9 = 36 – 108 = -72 Vì ∆

Ví dụ 4 về phương trình bậc hai một ẩn: 2x^2 + 5x + 7 = 0

Ta tính delta (∆) như sau: ∆ = 5^2 – 4 * 2 * 7 = 25 – 56 = -31 Vì ∆

Ví dụ 5 về phương trình bậc hai một ẩn: x^2 + 2x + 1 = 0

Ta tính delta (∆) như sau: ∆ = 2^2 – 4 * 1 * 1 = 4 – 4 = 0 Vì ∆ = 0, trong trường hợp này phương trình có một nghiệm kép, nhưng nó không có nghiệm riêng lẻ, nên cũng được coi là vô nghiệm.

4. Bài tập về phương trình vô nghiệm và lời giải:

4.1. Mức độ thông thường:

Bài tập 1: Giải phương trình: 2x + 3 = 2x + 5

Đáp án 1:

2x – 2x + 3 = 2x – 2x + 5 3 = 5

Vì phương trình trở thành 3 = 5, không có giá trị của x làm cho phương trình đúng.

Vậy phương trình không có nghiệm.

Bài tập 2: Giải phương trình: 4x + 7 = 4x – 9

Đáp án 2:

4x – 4x + 7 = 4x – 4x – 9 7 = -9

Vì phương trình trở thành 7 = -9, không có giá trị của x làm cho phương trình đúng.

Vậy phương trình không có nghiệm.

Bài tập 3: Giải phương trình: 3x^2 + 6x + 9 = 0

Đáp án 3:

Tính delta (∆): ∆ = 6^2 – 4 * 3 * 9 = 36 – 108 = -72

Vì ∆

Do đó, phương trình vô nghiệm.

Bài tập 4: Giải phương trình: 2x^2 – 4x + 8 = 0

Đáp án 4:

Tính delta (∆): ∆ = (-4)^2 – 4 * 2 * 8 = 16 – 64 = -48

Vì ∆

Do đó, phương trình vô nghiệm.

Bài tập 5: Giải phương trình: x^2 – 3x + 6 = 0

Đáp án 5: Tính delta (∆): ∆ = (-3)^2 – 4 * 1 * 6 = 9 – 24 = -15

Vì ∆

Do đó, phương trình vô nghiệm.

Bài tập 6: Giải phương trình: 5x^2 + 2x + 1 = 0

Đáp án 6: Tính delta (∆): ∆ = 2^2 – 4 * 5 * 1 = 4 – 20 = -16

Vì ∆

Do đó, phương trình vô nghiệm.

Bài tập 7: Giải phương trình: x^2 + 2x + 4 = 0

Đáp án 7:

Tính delta (∆): ∆ = 2^2 – 4 * 1 * 4 = 4 – 16 = -12

Vì ∆

Do đó, phương trình vô nghiệm.

Bài tập 8: Giải phương trình: 3x^2 + 6x + 9 = 3

Đáp án 8:

3x^2 + 6x + 9 – 3 = 0 3x^2 + 6x + 6 = 0

Tính delta (∆): ∆ = 6^2 – 4 * 3 * 6 = 36 – 72 = -36

Vì ∆

Do đó, phương trình vô nghiệm.

Bài tập 9: Giải phương trình: 4x^2 – 8x + 12 = 2

Đáp án 9:

4x^2 – 8x + 12 – 2 = 0 4x^2 – 8x + 10 = 0

Tính delta (∆): ∆ = (-8)^2 – 4 * 4 * 10 = 64 – 160 = -96

Vì ∆

Do đó, phương trình vô nghiệm.

Mọi người cùng hỏi:

Câu hỏi: Vô nghiệm là gì?

Trả lời: Trong toán học, vô nghiệm (hay còn gọi là “no solution”) là một khái niệm chỉ ra rằng không có giá trị hoặc tập hợp giá trị nào thỏa mãn một phương trình hoặc hệ phương trình đã cho.

Câu hỏi: Khi nào một phương trình trở thành vô nghiệm?

Trả lời: Một phương trình trở thành vô nghiệm khi không có giá trị nào của biến độc lập (ví dụ: x, y) làm cho phương trình đúng. Ví dụ, phương trình như “2x + 3 = 2x + 5” là vô nghiệm vì không có giá trị nào của x khiến phương trình trở thành đúng.

Câu hỏi: Ví dụ cụ thể nào cho một phương trình vô nghiệm?

Trả lời: Một ví dụ cụ thể cho một phương trình vô nghiệm là “x + 1 = x – 2”. Trong phương trình này, không có giá trị nào của x khiến cả hai mặt của phương trình trở thành bằng nhau.

Câu hỏi: Vô nghiệm và vô số nghiệm khác nhau như thế nào?

Trả lời: Vô nghiệm và vô số nghiệm là hai khái niệm trái ngược trong toán học. Khi một phương trình không có giá trị nào thỏa mãn, nó được gọi là vô nghiệm. Trong khi đó, khi một phương trình có vô hạn giá trị thỏa mãn, nó được gọi là vô số nghiệm.