Chuyên đề Toán học lớp 7: Tính chất ba đường trung trực của tam giác được VnDoc sưu tầm và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán học lớp 7 hiệu quả hơn. Mời các bạn tham khảo.
A. Lý thuyết
1. Đường trung trực của tam giác
Bạn đang xem: Tính chất ba đường trung trực của tam giác
• Trong một tam giác, đường trung trực của mỗi cạnh gọi là đường trung trực của tam giác đó.
Ví dụ: a là đường trung trực ứng với cạnh BC của tam giác ABC.
• Mỗi tam giác có ba đường trung trực.
Tính chất: Trong một tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến ứng với cạnh này.
2. Tính chất ba đường trung trực của tam giác
Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.
Điểm O là giao điểm ba đường trung trực của tam giác ABC, ta có OA = OB = OC
Chú ý: Vì giao điểm O của ba đường trung trực của tam giác ABC cách đều ba đỉnh của tam giác đó nên có một đường tròn tâm O đi qua ba đỉnh A, B, C. Ta gọi đường tròn đó là đường tròn ngoại tiếp tam giác ABC.
B. Trắc nghiệm & Tự luận
I. Câu hỏi trắc nghiệm
Bài 1: Cho ΔABC, hai đường cao BD và CE. Gọi M là trung điểm của BC. Em hãy chọn câu sai:
Xem thêm : Sau Of là gì? Vị trí và cách dùng chuẩn nhất
A. BM = MC
B. ME = MD
C. DM = MB
D. M không thuộc đường trung trực của DE
Bài 2: Cho ΔABC có AC > AB. Trên cạnh AC lấy điểm E sao cho CE = AB. Các đường trung trực của BE và AC cắt nhau tại O. Chọn câu đúng
A. ΔABO = ΔCOE
B. ΔBOA = ΔCOE
C. ΔAOB = ΔCOE
D. ΔABO = ΔCEO
Bài 3: Cho ΔABC có AC > AB. Trên cạnh AC lấy điểm E sao cho CE = AB. Các đường trung trực của BE và AC cắt nhau tại O. Chọn câu đúng
A. AO là đường trung tuyến của tam giác ABC
B. AO là đường trung trực của tam giác ABC
Xem thêm : Quả phật thủ: Nhiều công dụng hữu ích cho sức khỏe
C. AO ⊥ BC
D. AO là tia phân giác của góc A
Bài 4: Cho ΔABC trong đó ∠A = 100°. Các đường trung trực của AB và AC cắt cạnh BC theo thứ tự tại E và F. Tính ∠EAF .
A. 20° B. 30° C. 40° D. 50°
Bài 5: Cho ΔABC vuông tại A, kẻ đường cao AH. Trên cạnh AC lấy điểm K sao cho AK = AH. Kẻ KD ⊥ AC (D ∈ BC) . Chọn câu đúng
A. ΔAHD = ΔAKD
B. AD là đường trung trực của đoạn thẳng HK
C. AD là tia phân giác của góc HAK
D. Cả A, B, C đều đúng
II. Bài tập tự luận
Bài 1: Cho tam giác ABC có đường phân giác AK của góc A. Biết rằng giao điểm của đường phân giác của tam giác ABK trùng với giao điểm ba đường trung trực của tam giác ABC. Tìm số đo các góc của tam giác ABC.
Bài 2: Trên ba cạnh AB, BC và CA của tam giác đều ABC, lấy các điểm theo thứ tự M, N, P sao cho AM = BN = CP. Gọi O là giao điểm của ba đường trung trực của tam giác ABC. Chứng minh O cũng là gia điểm của ba đường trung trực của tam giác MNP.
Nguồn: https://luatduonggia.edu.vn
Danh mục: Tổng hợp