Categories: Tổng hợp
Published by
Video công thức tính khoảng cách từ một điểm đến một đường thẳng

Bài viết Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau.

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Bài giảng: Các dạng bài về khoảng cách, góc trong không gian – Cô Nguyễn Phương Anh (Giáo viên VietJack)

A. Phương pháp giải

– Muốn tìm khoảng cách từ một điểm M đến đường thẳng d: có 2 cách sau:

+ Cách 1: Tìm hình chiếu H của điểm đó đến d => MH là khoảng cách từ A đến d

+ Cách 2. công thức (với u→ là vectơ chỉ phương của d và M0 là một điểm thuộc d)

– Muốn tìm khoảng cách giữa hai đường thẳng chéo nhau d (u→ là vectơ chỉ phương của d và d đi qua M0) và d’ ((u’) ⃗ là vectơ chỉ phương của d’ và d’ đi qua M0′) ta làm như sau:

+ Viết phương trình mặt phẳng (P) chứa d và song song d’

+ Khoảng cách giữa d và d’ chính là khoảng cách từ điểm M0′ đến mặt phẳng (P) d( d,d’) = d(M0′,(P))

+ Hoặc dùng công thức:

B. Ví dụ minh họa

Ví dụ: 1

Tìm khoảng cách của A(-2; 1; 3) đến đường thẳng

A.

B.

C. 2

D.

Lời giải:

Đường thẳng d đi qua B(0;1; -1) và có vectơ chỉ phương

Ta có:

Vậy

Chọn B.

Ví dụ: 2

Cho mặt phẳng (P): 3x – 2y – z + 5 = 0 và đường thẳng Tính khoảng cách giữa d và (P)

A.

B.

C.

D.

Lời giải:

Mặt phẳng (P) có vecto pháp tuyến

Đường thẳng d có vecto chỉ phương và đi qua điểm M0(1;7;3)

Ta có:

Vậy d // (P)

Chọn D.

Ví dụ: 3

Tính khoảng cách giữa hai đường thẳng

A.

B.

C.

D. 1

Lời giải:

Cách 1:

Đường thẳng d có vecto chỉ phương là:

Đường thẳng d’ có vecto chỉ phương là: .

– Gọi (P) là mặt phẳng chứa d và song song với d’. (P) nhận vectơ pháp tuyến là

M0(1;-1;1) thuộc d cũng thuộc (P) nên phương trình mặt phẳng (P) là:

– 1(x-1) – 2(y+1) + 1(z-1) = 0 hay x + 2y – z + 2 = 0

– d’ đi qua M0′(2;-2;3)

Vậy

Cách 2:

Ta có:

Vậy

chọn A.

Ví dụ: 4

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng và điểm A( -1; 2; 1). Tính khoảng cách từ điểm A đến đường thẳng d?

A.

B.

C.

D. Đáp án khác

Lời giải:

+ Đường thẳng d đi qua điểm M( 1; 0; – 2) và có vecto chỉ phương

+ Ta có:

=> Khoảng cách từ A đến đường thẳng d là:

Chọn C.

Ví dụ: 5

Trong không gian với hệ tọa độ Oxyz; cho hai đường thẳng . Xác định khoảng cách giữa hai đường thẳng đã cho?

A.

B.

C.

D. Tất cả sai

Lời giải:

+ Đường thẳng d đi qua A( 1;0; – 2) và có vecto chỉ phương

+ Đường thẳng d’ đi qua B( 2; -1; 2) và có vecto chỉ phương

=> Khoảng cách giữa hai đường thẳng đã cho là:

Chọn B.

Ví dụ: 6

Trong không gian với hệ tọa độ Oxyz; cho 3 điểm A( 0; 1; 2); B( -2;0; 1) và C( 2; 1; -3). Tính khoảng cách từ điểm A đến đường thẳng BC?

A.

B.

C.

D. Đáp án khác

Lời giải:

+ Đường thẳng BC đi qua B( -2; 0;1) và nhận vecto làm vecto chỉ phương

+ Ta có:

=> Khoảng cách từ điể A đến đường thẳng BC là:

Chọn A.

Ví dụ: 7

Trong không gian với hệ tọa độ Oxyz; cho bốn điểm A(1; 2; -1); B( -2; 1; 1) C( 2; 1; 3) và D( -1; 0; 5). Tính khoảng cách hai đường thẳng AB và CD? biết rằng ba điểm A, C và D không thẳng hàng.

A.

B.

C.

D.

Lời giải:

+ Đường thẳng AB: đi qua A(1;2; -1) và nhận vecto làm vecto chỉ phương

+ Đường thẳng CD đi qua C( 2; 1; 3) và nhận vecto làm vecto chỉ phương.

+ Hai đường thẳng AB và CD có cùng vecto chỉ phương và điểm A không thuộc đường thẳng CD.

=> AB// CD nên d( AB; CD) = d( A; CD)

+ Ta có:

Chọn C.

Ví dụ: 8

Trong không gian với hệ tọa độ Oxyz; cho điểm A(-1; 0;2) và đường thẳng d: . Tìm m để khoảng cách từ A đến d là ?

A. m= -1 hoặc m= (- 2)/3

B. m= – 1 hoặc m= 1/7

C. m= 1 hoặc m= – 1

D. m= 1 hoặc m= 1/7

Lời giải:

+ Đường thẳng d đi qua M( 2; 1; 2) và có vecto chỉ phương

+ Ta có;

+ Theo đầu bài ta có: d( A; d)=

Chọn B.

Ví dụ: 9

Trong không gian với hệ tọa độ Oxyz; cho điểm A( 1; m;2) và đường thẳng . Tìm m để khoảng cách từ A đến đường thẳng d là 2?

A. m= 2

B. m= – 1

C. m= 3

D. m= – 4

Lời giải:

+ Đường thẳng d đi qua M( 1; 2; 0) và có vecto chỉ phương

+ Ta có:

+ Để khoảng cách từ A đến d là 2 thì:

Chọn A.

C. Bài tập vận dụng

Câu 1:

Tìm khoảng cách của A( 1;-2; 1) đến đường thẳng

A.

B.

C. 2

D.

Lời giải:

Đường thẳng d đi qua B(2;0; -1) và có vectơ chỉ phương

Ta có:

Vậy

Chọn B.

Câu 2:

Cho mặt phẳng (P): x + 2y – z + 1= 0 và đường thẳng . Tính khoảng cách giữa d và (P)

A.

B.

C.

D.

Lời giải:

Mặt phẳng (P) có vecto pháp tuyến

Đường thẳng d có vecto chỉ phương và đi qua điểm M0 (1;0;3)

Ta có:

Vậy d // (P)

Chọn C.

Câu 3:

Tính khoảng cách giữa hai đường thẳng

A.

B.

C.

D.

Lời giải:

Đường thẳng d đi qua A( 2; -1; 1) và có vecto chỉ phương .

Đường thẳng d’ đi qua B( 0; -2; 1) và có vecto chỉ phương

Ta có:

Vậy

Chọn D.

Câu 4:

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng và điểm A( 0;-2; 3). Tính khoảng cách từ điểm A đến đường thẳng d?

A.

B.

C.

D. Đáp án khác

Lời giải:

+ Đường thẳng d đi qua điểm M( 0;1; -1) và có vecto chỉ phương

+ Ta có;

=> Khoảng cách từ A đến đường thẳng d là:

Chọn A.

Câu 5:

Trong không gian với hệ tọa độ Oxyz; cho hai đường thẳng . Xác định khoảng cách giữa hai đường thẳng đã cho?

A.

B.

C.

D. Tất cả sai

Lời giải:

+ Đường thẳng d đi qua A( 1;0; 0) và có vecto chỉ phương

+ Đường thẳng d’ đi qua B(0;1; 2) và có vecto chỉ phương

=> Khỏang cách giữa hai đường thẳng đã cho là:

Chọn D.

Câu 6:

Trong không gian với hệ tọa độ Oxyz; cho hai điểm A( 2; -1; -1); B(2; 3; 1). Tính khoảng cách từ điểm O đến đường thẳng AB?

A.

B.

C.

D. Đáp án khác

Lời giải:

+ Đường thẳng AB đi qua A( 2; -1; -1) và nhận vecto làm vecto chỉ phương

+ Ta có:

=>Khoảng cách từ điểm O đến đường thẳng AB là:

Chọn A.

Câu 7:

Trong không gian với hệ tọa độ Oxyz; cho bốn điểm A(0; 0; 2); B(1; 2; -1) C( 2; 1; 3) và D( 4; 5; -3). Tính khoảng cách hai đường thẳng AB và CD? biết rằng ba điểm A, C và D không thẳng hàng.

A.

B.

C.

D.

Lời giải:

+ Đường thẳng AB: đi qua A(0;0; 2) và nhận vecto làm vecto chỉ phương

+ Đường thẳng CD đi qua C( 2; 1; 3) và nhận vecto làm vecto chỉ phương.

+ Hai đường thẳng AB và CD có hai vecto chỉ phương là cùng phương và điểm A không thuộc đường thẳng CD.

=> AB// CD nên d( AB; CD) = d( A; CD)

+ Ta có:

Chọn C.

Câu 8:

Trong không gian với hệ tọa độ Oxyz; cho điểm A(1; 1; 1) và đường thẳng . Tìm m để khoảng cách từ A đến d là ?

A. m= -1

B. m= 0

C. m= – 2

D. m= 1

Lời giải:

+ Đường thẳng d đi qua M( 1;2; 2) và có vecto chỉ phương

+ Ta có;

+ Theo đầu bài ta có: d( A; d)=

Chọn B.

Câu 9:

Trong không gian với hệ tọa độ Oxyz; cho điểm A(m; 0; 2) và đường thẳng . Tìm m để khoảng cách từ A đến đường thẳng d là ?

A. m= 2 hoặc m=1

B. m= -1 hoặc m= 0

C. m= 3 hoặc m= 0

D. m= – 4 hoặc m= -1

Lời giải:

+ Đường thẳng d đi qua M( 1; 2; – 1) và có vecto chỉ phương

+ Ta có:

+ Để khoảng cách từ A đến d là 2 thì:

Chọn B.

D. Bài tập tự luyện

Bài 1. Tính khoảng cách từ điểm M(4; -3; 2) đến đường thẳng d có phương trình: x+23=y+22=z−1?

Bài 2. Tính khoảng cách từ điểm M đến đường thẳng d trong mỗi trường hợp sau:

a) M(2; 3; 1); d: x+21=y−12=z+12.

b) M(1; 0; 0); d: x−31=y−32=z−11.

Bài 3. Trong không gian tọa độ Oxyz cho đường thẳng (d): x−12=y+11=z−21 điểm M(−3; 1; 2). Khoảng cách từ điểm M đến đường thẳng d là?

Bài 4. Trong không gian với hệ tọa độ Oxyz, tính khoảng cách d từ điểm A(1; -2; 3) đến đường thẳng Δ: x−105=y−21=z+21.

Bài 5. Tính khoảng cách từ điểm N(2; 3; -1) đến đường thẳng Δ đi qua điểm M0−12;0;−34và có vectơ chỉ phương u→=−4;2;−1.

Bài giảng: Các dạng bài về khoảng cách, góc trong không gian – Cô Nguyễn Phương Anh (Giáo viên VietJack)

Xem thêm các chuyên đề Toán lớp 12 có trong đề thi THPT Quốc gia khác:

  • Vị trí tương đối của đường thẳng và mặt phẳng
  • Vị trí tương đối của đường thẳng và mặt cầu
  • Hình chiếu của một điểm lên đường thẳng, mặt phẳng
  • Viết phương trình đường thẳng liên quan đến khoảng cách
  • Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Săn SALE shopee Tết:

  • Đồ dùng học tập giá rẻ
  • Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
  • Tsubaki 199k/3 chai
  • L’Oreal mua 1 tặng 3

This post was last modified on 12/02/2024 14:48

Published by

Bài đăng mới nhất

Con số may mắn hôm nay 23/11/2024 theo năm sinh: Nhặt TIỀN lộc từ số hợp mệnh

Con số may mắn hôm nay 23/11/2024 theo năm sinh: Nhặt TIỀN từ con số…

10 giờ ago

Tử vi thứ 7 ngày 23/11/2024 của 12 con giáp: Thìn muộn phiền, Dậu có xung đột

Tử vi thứ bảy ngày 23/11/2024 của 12 con giáp: Tuổi Thìn chán nản, tuổi…

10 giờ ago

4 con giáp vận trình xuống dốc, cuối tuần này (23-24/11) làm gì cũng xui, nguy cơ thất bại

Vận may của 4 con giáp đang ngày càng xuống dốc. Cuối tuần này (23-24/11),…

14 giờ ago

Số cuối ngày sinh dự báo người GIÀU PHƯỚC, trường thọ khỏe mạnh, trung niên PHẤT lên mạnh mẽ

Con số cuối cùng trong ngày sinh dự đoán con người sẽ GIÀU CÓ, sống…

19 giờ ago

Cuối tuần này (23-24/11) cát tinh ban lộc, 4 con giáp may mắn ngập tràn, thành công ngoài mong đợi

Cuối tuần này (23-24/11), 4 con giáp sẽ gặp nhiều may mắn và thành công…

19 giờ ago

Tử vi hôm nay – Top 3 con giáp thịnh vượng nhất ngày 22/11/2024

Tử vi hôm nay – Top 3 con giáp thịnh vượng nhất ngày 22/11/2024

20 giờ ago